ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/math/Vector.hpp
(Generate patch)

Comparing trunk/src/math/Vector.hpp (file contents):
Revision 76 by tim, Thu Oct 14 23:28:09 2004 UTC vs.
Revision 1615 by gezelter, Fri Aug 26 17:55:44 2011 UTC

# Line 1 | Line 1
1   /*
2 < * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project
3 < *
4 < * Contact: oopse@oopse.org
5 < *
6 < * This program is free software; you can redistribute it and/or
7 < * modify it under the terms of the GNU Lesser General Public License
8 < * as published by the Free Software Foundation; either version 2.1
9 < * of the License, or (at your option) any later version.
10 < * All we ask is that proper credit is given for our work, which includes
11 < * - but is not limited to - adding the above copyright notice to the beginning
12 < * of your source code files, and to any copyright notice that you may distribute
13 < * with programs based on this work.
14 < *
15 < * This program is distributed in the hope that it will be useful,
16 < * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 < * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 < * GNU Lesser General Public License for more details.
19 < *
20 < * You should have received a copy of the GNU Lesser General Public License
21 < * along with this program; if not, write to the Free Software
22 < * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4 + * The University of Notre Dame grants you ("Licensee") a
5 + * non-exclusive, royalty free, license to use, modify and
6 + * redistribute this software in source and binary code form, provided
7 + * that the following conditions are met:
8 + *
9 + * 1. Redistributions of source code must retain the above copyright
10 + *    notice, this list of conditions and the following disclaimer.
11 + *
12 + * 2. Redistributions in binary form must reproduce the above copyright
13 + *    notice, this list of conditions and the following disclaimer in the
14 + *    documentation and/or other materials provided with the
15 + *    distribution.
16 + *
17 + * This software is provided "AS IS," without a warranty of any
18 + * kind. All express or implied conditions, representations and
19 + * warranties, including any implied warranty of merchantability,
20 + * fitness for a particular purpose or non-infringement, are hereby
21 + * excluded.  The University of Notre Dame and its licensors shall not
22 + * be liable for any damages suffered by licensee as a result of
23 + * using, modifying or distributing the software or its
24 + * derivatives. In no event will the University of Notre Dame or its
25 + * licensors be liable for any lost revenue, profit or data, or for
26 + * direct, indirect, special, consequential, incidental or punitive
27 + * damages, however caused and regardless of the theory of liability,
28 + * arising out of the use of or inability to use software, even if the
29 + * University of Notre Dame has been advised of the possibility of
30 + * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41 <
41 >
42   /**
43   * @file Vector.hpp
44   * @author Teng Lin
# Line 36 | Line 52
52   #include <cassert>
53   #include <cmath>
54   #include <iostream>
55 + #include <math.h>
56 + #include "config.h"
57 + namespace OpenMD {
58  
59 < namespace oopse {
59 >  static const RealType epsilon = 0.000001;
60  
61 <    const double epsilon = 0.000001;
61 >  template<typename T>
62 >  inline bool equal(T e1, T e2) {
63 >    return e1 == e2;
64 >  }
65  
66 <    template<typename T>
67 <    inline bool equal(T e1, T e2) {
68 <        return e1 == e2;
69 <    }
66 >  //template<>
67 >  //inline bool equal(float e1, float e2) {
68 >  //  return fabs(e1 - e2) < epsilon;
69 >  //}
70  
71 <    template<>
72 <    inline bool equal(float e1, float e2) {
73 <        return fabs(e1 - e2) < epsilon;
74 <    }
71 >  template<>
72 >  inline bool equal(RealType e1, RealType e2) {
73 >    return fabs(e1 - e2) < epsilon;
74 >  }
75  
54    template<>
55    inline bool equal(double e1, double e2) {
56        return fabs(e1 - e2) < epsilon;
57    }
76      
77 <    /**
78 <     * @class Vector Vector.hpp "math/Vector.hpp"
79 <     * @brief Fix length vector class
80 <     */
81 <    template<typename Real, unsigned int Dim>
82 <    class Vector{
83 <        public:
77 >  /**
78 >   * @class Vector Vector.hpp "math/Vector.hpp"
79 >   * @brief Fix length vector class
80 >   */
81 >  template<typename Real, unsigned int Dim>
82 >  class Vector{
83 >  public:
84  
85 <            /** default constructor */
86 <            inline Vector(){
69 <                for (unsigned int i = 0; i < Dim; i++)
70 <                    data_[i] = 0.0;
71 <            }
85 >    typedef Real ElemType;
86 >    typedef Real* ElemPoinerType;
87  
88 <            /** Constructs and initializes a Vector from a vector */
89 <            inline Vector(const Vector<Real, Dim>& v) {
90 <                *this  = v;
91 <            }
88 >    /** default constructor */
89 >    inline Vector(){
90 >      for (unsigned int i = 0; i < Dim; i++)
91 >        this->data_[i] = 0;
92 >    }
93  
94 <            /** copy assignment operator */
95 <            inline Vector<Real, Dim>& operator=(const Vector<Real, Dim>& v) {
96 <                if (this == &v)
97 <                    return *this;
94 >    /** Constructs and initializes a Vector from a vector */
95 >    inline Vector(const Vector<Real, Dim>& v) {
96 >      *this  = v;
97 >    }
98 >
99 >    /** copy assignment operator */
100 >    inline Vector<Real, Dim>& operator=(const Vector<Real, Dim>& v) {
101 >      if (this == &v)
102 >        return *this;
103                  
104 <                for (unsigned int i = 0; i < Dim; i++)            
105 <                    data_[i] = v[i];
104 >      for (unsigned int i = 0; i < Dim; i++)            
105 >        this->data_[i] = v[i];
106                  
107 <                return *this;
108 <            }
107 >      return *this;
108 >    }
109 >
110 >    template<typename T>
111 >    inline Vector(const T& s){
112 >      for (unsigned int i = 0; i < Dim; i++)
113 >        this->data_[i] = s;
114 >    }
115              
116 <            /** Constructs and initializes a Vector from an array */            
117 <            inline Vector( double* v) {
118 <                for (unsigned int i = 0; i < Dim; i++)
119 <                    data_[i] = v[i];
120 <            }
116 >    /** Constructs and initializes a Vector from an array */            
117 >    inline Vector( Real* v) {
118 >      for (unsigned int i = 0; i < Dim; i++)
119 >        this->data_[i] = v[i];
120 >    }
121  
122 <            /**
123 <             * Returns reference of ith element.
124 <             * @return reference of ith element
125 <             * @param i index
126 <             */
127 <            inline double& operator[](unsigned int  i) {
128 <                assert( i < Dim);
129 <                return data_[i];
130 <            }
122 >    /**
123 >     * Returns reference of ith element.
124 >     * @return reference of ith element
125 >     * @param i index
126 >     */
127 >    inline Real& operator[](unsigned int  i) {
128 >      assert( i < Dim);
129 >      return this->data_[i];
130 >    }
131  
132 <            /**
133 <             * Returns reference of ith element.
134 <             * @return reference of ith element
135 <             * @param i index
136 <             */
137 <            inline double& operator()(unsigned int  i) {
138 <                assert( i < Dim);
139 <                return data_[i];
140 <            }
132 >    /**
133 >     * Returns reference of ith element.
134 >     * @return reference of ith element
135 >     * @param i index
136 >     */
137 >    inline Real& operator()(unsigned int  i) {
138 >      assert( i < Dim);
139 >      return this->data_[i];
140 >    }
141  
142 <            /**
143 <             * Returns constant reference of ith element.
144 <             * @return reference of ith element
145 <             * @param i index
146 <             */
147 <            inline  const double& operator[](unsigned int i) const {
148 <                assert( i < Dim);
149 <                return data_[i];
150 <            }
142 >    /**
143 >     * Returns constant reference of ith element.
144 >     * @return reference of ith element
145 >     * @param i index
146 >     */
147 >    inline  const Real& operator[](unsigned int i) const {
148 >      assert( i < Dim);
149 >      return this->data_[i];
150 >    }
151  
152 <            /**
153 <             * Returns constant reference of ith element.
154 <             * @return reference of ith element
155 <             * @param i index
156 <             */
157 <            inline  const double& operator()(unsigned int i) const {
158 <                assert( i < Dim);
159 <                return data_[i];
160 <            }
152 >    /**
153 >     * Returns constant reference of ith element.
154 >     * @return reference of ith element
155 >     * @param i index
156 >     */
157 >    inline  const Real& operator()(unsigned int i) const {
158 >      assert( i < Dim);
159 >      return this->data_[i];
160 >    }
161  
162 <            /**
163 <             * Tests if this vetor is equal to other vector
164 <             * @return true if equal, otherwise return false
165 <             * @param v vector to be compared
166 <             */
167 <             inline bool operator ==(const Vector<Real, Dim>& v) {
162 >    /** Copy the internal data to an array*/
163 >    void getArray(Real* array) {
164 >      for (unsigned int i = 0; i < Dim; i ++) {
165 >        array[i] = this->data_[i];
166 >      }                
167 >    }
168  
169 <                for (unsigned int i = 0; i < Dim; i ++) {
170 <                    if (!equal(data_[i], v[i])) {
171 <                        return false;
172 <                    }
173 <                }
169 >    /** Returns the pointer of internal array */
170 >    Real* getArrayPointer() {
171 >      return this->data_;
172 >    }
173 >            
174 >    /**
175 >     * Tests if this vetor is equal to other vector
176 >     * @return true if equal, otherwise return false
177 >     * @param v vector to be compared
178 >     */
179 >    inline bool operator ==(const Vector<Real, Dim>& v) {
180 >
181 >      for (unsigned int i = 0; i < Dim; i ++) {
182 >        if (!equal(this->data_[i], v[i])) {
183 >          return false;
184 >        }
185 >      }
186                  
187 <                return true;
188 <            }
187 >      return true;
188 >    }
189  
190 <            /**
191 <             * Tests if this vetor is not equal to other vector
192 <             * @return true if equal, otherwise return false
193 <             * @param v vector to be compared
194 <             */
195 <            inline bool operator !=(const Vector<Real, Dim>& v) {
196 <                return !(*this == v);
197 <            }
190 >    /**
191 >     * Tests if this vetor is not equal to other vector
192 >     * @return true if equal, otherwise return false
193 >     * @param v vector to be compared
194 >     */
195 >    inline bool operator !=(const Vector<Real, Dim>& v) {
196 >      return !(*this == v);
197 >    }
198              
199 <            /** Negates the value of this vector in place. */          
200 <            inline void negate() {
201 <                data_[0] = -data_[0];
202 <                data_[1] = -data_[1];
203 <                data_[2] = -data_[2];
165 <            }
199 >    /** Negates the value of this vector in place. */          
200 >    inline void negate() {
201 >      for (unsigned int i = 0; i < Dim; i++)
202 >        this->data_[i] = -this->data_[i];
203 >    }
204  
205 <            /**
206 <            * Sets the value of this vector to the negation of vector v1.
207 <            * @param v1 the source vector
208 <            */
209 <            inline void negate(const Vector<Real, Dim>& v1) {
210 <                for (unsigned int i = 0; i < Dim; i++)
211 <                    data_[i] = -v1.data_[i];
205 >    /**
206 >     * Sets the value of this vector to the negation of vector v1.
207 >     * @param v1 the source vector
208 >     */
209 >    inline void negate(const Vector<Real, Dim>& v1) {
210 >      for (unsigned int i = 0; i < Dim; i++)
211 >        this->data_[i] = -v1.data_[i];
212  
213 <            }
213 >    }
214              
215 <            /**
216 <            * Sets the value of this vector to the sum of itself and v1 (*this += v1).
217 <            * @param v1 the other vector
218 <            */
219 <            inline void add( const Vector<Real, Dim>& v1 ) {
220 <                for (unsigned int i = 0; i < Dim; i++)
221 <                    data_[i] += v1.data_[i];
222 <                }
215 >    /**
216 >     * Sets the value of this vector to the sum of itself and v1 (*this += v1).
217 >     * @param v1 the other vector
218 >     */
219 >    inline void add( const Vector<Real, Dim>& v1 ) {
220 >      for (unsigned int i = 0; i < Dim; i++)
221 >        this->data_[i] += v1.data_[i];
222 >    }
223  
224 <            /**
225 <            * Sets the value of this vector to the sum of v1 and v2 (*this = v1 + v2).
226 <            * @param v1 the first vector
227 <            * @param v2 the second vector
228 <            */
229 <            inline void add( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) {
230 <                for (unsigned int i = 0; i < Dim; i++)
231 <                    data_[i] = v1.data_[i] + v2.data_[i];
232 <            }
224 >    /**
225 >     * Sets the value of this vector to the sum of v1 and v2 (*this = v1 + v2).
226 >     * @param v1 the first vector
227 >     * @param v2 the second vector
228 >     */
229 >    inline void add( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) {
230 >      for (unsigned int i = 0; i < Dim; i++)
231 >        this->data_[i] = v1.data_[i] + v2.data_[i];
232 >    }
233  
234 <            /**
235 <            * Sets the value of this vector to the difference  of itself and v1 (*this -= v1).
236 <            * @param v1 the other vector
237 <            */
238 <            inline void sub( const Vector<Real, Dim>& v1 ) {
239 <                for (unsigned int i = 0; i < Dim; i++)
240 <                    data_[i] -= v1.data_[i];
241 <            }
234 >    /**
235 >     * Sets the value of this vector to the difference  of itself and v1 (*this -= v1).
236 >     * @param v1 the other vector
237 >     */
238 >    inline void sub( const Vector<Real, Dim>& v1 ) {
239 >      for (unsigned int i = 0; i < Dim; i++)
240 >        this->data_[i] -= v1.data_[i];
241 >    }
242  
243 <            /**
244 <            * Sets the value of this vector to the difference of vector v1 and v2 (*this = v1 - v2).
245 <            * @param v1 the first vector
246 <            * @param v2 the second vector
247 <            */
248 <            inline void sub( const Vector<Real, Dim>& v1, const Vector  &v2 ){
249 <                for (unsigned int i = 0; i < Dim; i++)
250 <                    data_[i] = v1.data_[i] - v2.data_[i];
251 <            }
243 >    /**
244 >     * Sets the value of this vector to the difference of vector v1 and v2 (*this = v1 - v2).
245 >     * @param v1 the first vector
246 >     * @param v2 the second vector
247 >     */
248 >    inline void sub( const Vector<Real, Dim>& v1, const Vector  &v2 ){
249 >      for (unsigned int i = 0; i < Dim; i++)
250 >        this->data_[i] = v1.data_[i] - v2.data_[i];
251 >    }
252  
253 <            /**
254 <            * Sets the value of this vector to the scalar multiplication of itself (*this *= s).
255 <            * @param s the scalar value
256 <            */
257 <            inline void mul( double s ) {
258 <                for (unsigned int i = 0; i < Dim; i++)
259 <                   data_[i] *= s;
260 <            }
253 >    /**
254 >     * Sets the value of this vector to the scalar multiplication of itself (*this *= s).
255 >     * @param s the scalar value
256 >     */
257 >    inline void mul( Real s ) {
258 >      for (unsigned int i = 0; i < Dim; i++)
259 >        this->data_[i] *= s;
260 >    }
261  
262 <            /**
263 <            * Sets the value of this vector to the scalar multiplication of vector v1  
264 <            * (*this = s * v1).
265 <            * @param s the scalar value
266 <            * @param v1 the vector
267 <            */
268 <            inline void mul( double s, const Vector<Real, Dim>& v1 ) {
269 <                for (unsigned int i = 0; i < Dim; i++)
270 <                    data_[i] = s * v1.data_[i];
271 <            }
262 >    /**
263 >     * Sets the value of this vector to the scalar multiplication of vector v1  
264 >     * (*this = s * v1).
265 >     * @param v1 the vector            
266 >     * @param s the scalar value
267 >     */
268 >    inline void mul( const Vector<Real, Dim>& v1, Real s) {
269 >      for (unsigned int i = 0; i < Dim; i++)
270 >        this->data_[i] = s * v1.data_[i];
271 >    }
272  
273 <            /**
274 <            * Sets the value of this vector to the scalar division of itself  (*this /= s ).
275 <            * @param s the scalar value
276 <            */            
277 <            inline void div( double s) {
278 <                for (unsigned int i = 0; i < Dim; i++)            
279 <                    data_[i] /= s;
280 <            }
273 >    /**
274 >     * Sets the elements of this vector to the multiplication of
275 >     * elements of two other vectors.  Not to be confused with scalar
276 >     * multiplication (mul) or dot products.
277 >     *
278 >     * (*this.data_[i] =  v1.data_[i] * v2.data_[i]).
279 >     * @param v1 the first vector            
280 >     * @param v2 the second vector
281 >     */
282 >    inline void Vmul( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) {
283 >      for (unsigned int i = 0; i < Dim; i++)
284 >        this->data_[i] = v1.data_[i] * v2.data_[i];
285 >    }
286  
287 <            /**
288 <            * Sets the value of this vector to the scalar division of vector v1  (*this = v1 / s ).
289 <            * @param v1 the source vector
290 <            * @param s the scalar value
291 <            */                        
292 <            inline void div( const Vector<Real, Dim>& v1, double s ) {
293 <                for (unsigned int i = 0; i < Dim; i++)
294 <                    data_[i] = v1.data_[i] / s;
252 <            }
287 >    /**
288 >     * Sets the value of this vector to the scalar division of itself  (*this /= s ).
289 >     * @param s the scalar value
290 >     */            
291 >    inline void div( Real s) {
292 >      for (unsigned int i = 0; i < Dim; i++)            
293 >        this->data_[i] /= s;
294 >    }
295  
296 <            /** @see #add */
297 <            inline Vector<Real, Dim>& operator +=( const Vector<Real, Dim>& v1 ) {
298 <                add(v1);
299 <                return *this;
300 <            }
296 >    /**
297 >     * Sets the value of this vector to the scalar division of vector v1  (*this = v1 / s ).
298 >     * @param v1 the source vector
299 >     * @param s the scalar value
300 >     */                        
301 >    inline void div( const Vector<Real, Dim>& v1, Real s ) {
302 >      for (unsigned int i = 0; i < Dim; i++)
303 >        this->data_[i] = v1.data_[i] / s;
304 >    }
305  
306 <            /** @see #sub */
307 <            inline Vector<Real, Dim>& operator -=( const Vector<Real, Dim>& v1 ) {
308 <                sub(v1);
309 <                return *this;
310 <            }
306 >    /**
307 >     * Sets the elements of this vector to the division of
308 >     * elements of two other vectors.  Not to be confused with scalar
309 >     * division (div)
310 >     *
311 >     * (*this.data_[i] =  v1.data_[i] / v2.data_[i]).
312 >     * @param v1 the first vector            
313 >     * @param v2 the second vector
314 >     */
315 >    inline void Vdiv( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) {
316 >      for (unsigned int i = 0; i < Dim; i++)
317 >        this->data_[i] = v1.data_[i] / v2.data_[i];
318 >    }
319  
266            /** @see #mul */
267            inline Vector<Real, Dim>& operator *=( double s) {
268                mul(s);
269                return *this;
270            }
320  
321 <            /** @see #div */
322 <            inline Vector<Real, Dim>& operator /=( double s ) {
323 <                div(s);
324 <                return *this;
325 <            }
321 >    /** @see #add */
322 >    inline Vector<Real, Dim>& operator +=( const Vector<Real, Dim>& v1 ) {
323 >      add(v1);
324 >      return *this;
325 >    }
326  
327 <            /**
328 <             * Returns the length of this vector.
329 <             * @return the length of this vector
330 <             */
331 <             inline double length() {
283 <                return sqrt(lengthSquared());  
284 <            }
285 <            
286 <            /**
287 <             * Returns the squared length of this vector.
288 <             * @return the squared length of this vector
289 <             */
290 <             inline double lengthSquared() {
291 <                return dot(*this, *this);
292 <            }
293 <            
294 <            /** Normalizes this vector in place */
295 <            inline void normalize() {
296 <                double len;
327 >    /** @see #sub */
328 >    inline Vector<Real, Dim>& operator -=( const Vector<Real, Dim>& v1 ) {
329 >      sub(v1);
330 >      return *this;
331 >    }
332  
333 <                len = length();
334 <                *this /= len;
335 <            }
336 <            
337 <        protected:
303 <            double data_[3];
304 <        
305 <    };
333 >    /** @see #mul */
334 >    inline Vector<Real, Dim>& operator *=( Real s) {
335 >      mul(s);
336 >      return *this;
337 >    }
338  
339 <    /** unary minus*/
340 <    template<typename Real, unsigned int Dim>    
341 <    inline Vector<Real, Dim> operator -(const Vector<Real, Dim>& v1){
342 <        Vector tmp(v1);
311 <        return tmp.negate();
339 >    /** @see #div */
340 >    inline Vector<Real, Dim>& operator /=( Real s ) {
341 >      div(s);
342 >      return *this;
343      }
344  
345      /**
346 <     * Return the sum of two vectors  (v1 - v2).
347 <     * @return the sum of two vectors
348 <     * @param v1 the first vector
349 <     * @param v2 the second vector
350 <     */  
351 <    template<typename Real, unsigned int Dim>    
352 <    inline Vector<Real, Dim> operator +(const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) {
353 <        Vector<Real, Dim> result;
354 <        
324 <        result.add(v1, v2);
325 <        return result;        
346 >     * Returns the sum of all elements of this vector.
347 >     * @return the sum of all elements of this vector
348 >     */
349 >    inline Real sum() {
350 >      Real tmp;
351 >      tmp = 0;
352 >      for (unsigned int i = 0; i < Dim; i++)
353 >        tmp += this->data_[i];
354 >      return tmp;  
355      }
356  
357      /**
358 <     * Return the difference of two vectors  (v1 - v2).
359 <     * @return the difference of two vectors
360 <     * @param v1 the first vector
361 <     * @param v2 the second vector
362 <     */  
363 <    template<typename Real, unsigned int Dim>    
364 <    Vector<Real, Dim> operator -(const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) {
365 <        Vector<Real, Dim> result;
366 <        result.sub(v1, v2);
338 <        return result;        
358 >     * Returns the product of all elements of this vector.
359 >     * @return the product of all elements of this vector
360 >     */
361 >    inline Real componentProduct() {
362 >      Real tmp;
363 >      tmp = 1;
364 >      for (unsigned int i = 0; i < Dim; i++)
365 >        tmp *= this->data_[i];
366 >      return tmp;  
367      }
368 <    
368 >            
369      /**
370 <     * Returns the vaule of scalar multiplication of this vector v1 (v1 * r).
371 <     * @return  the vaule of scalar multiplication of this vector
372 <     * @param v1 the source vector
373 <     * @param s the scalar value
374 <     */
347 <    template<typename Real, unsigned int Dim>                
348 <    Vector<Real, Dim> operator * ( const Vector<Real, Dim>& v1, double s) {      
349 <        Vector<Real, Dim> result;
350 <        result.mul(s, v1);
351 <        return result;          
370 >     * Returns the length of this vector.
371 >     * @return the length of this vector
372 >     */
373 >    inline Real length() {
374 >      return sqrt(lengthSquare());  
375      }
376 <    
376 >            
377      /**
378 <     * Returns the vaule of scalar multiplication of this vector v1 (v1 * r).
379 <     * @return  the vaule of scalar multiplication of this vector
380 <     * @param s the scalar value
381 <     * @param v1 the source vector
382 <     */  
360 <    template<typename Real, unsigned int Dim>
361 <    Vector<Real, Dim> operator * ( double s, const Vector<Real, Dim>& v1 ) {
362 <        Vector<Real, Dim> result;
363 <        result.mul(s, v1);
364 <        return result;          
378 >     * Returns the squared length of this vector.
379 >     * @return the squared length of this vector
380 >     */
381 >    inline Real lengthSquare() {
382 >      return dot(*this, *this);
383      }
384 +            
385 +    /** Normalizes this vector in place */
386 +    inline void normalize() {
387 +      Real len;
388  
389 <    /**
390 <     * Returns the  value of division of a vector by a scalar.
391 <     * @return  the vaule of scalar division of this vector
392 <     * @param v1 the source vector
393 <     * @param s the scalar value
394 <     */
373 <    template<typename Real, unsigned int Dim>    
374 <    Vector<Real, Dim> operator / ( const Vector<Real, Dim>& v1, double s) {      
375 <        Vector<Real, Dim> result;
376 <        result.div( v1,s);
377 <        return result;          
389 >      len = length();
390 >                
391 >      //if (len < OpenMD::NumericConstant::epsilon)
392 >      //  throw();
393 >                
394 >      *this /= len;
395      }
396 <    
396 >
397      /**
398 <     * Returns the  value of division of a vector by a scalar.
399 <     * @return  the vaule of scalar division of this vector
383 <     * @param s the scalar value
384 <     * @param v1 the source vector
398 >     * Tests if this vector is normalized
399 >     * @return true if this vector is normalized, otherwise return false
400       */
401 <    template<typename Real, unsigned int Dim>        
402 <    inline Vector<Real, Dim> operator /( double s, const Vector<Real, Dim>& v1 ) {
403 <        Vector<Real, Dim> result;
389 <        result.div( v1,s);
390 <        return result;          
391 <    }
401 >    inline bool isNormalized() {
402 >      return equal(lengthSquare(), (RealType)1);
403 >    }          
404  
405 <    /** fuzzy comparson */
406 <    template<typename Real, unsigned int Dim>        
407 <    inline bool epsilonEqual( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) {
405 >    unsigned int size() {return Dim;}
406 >  protected:
407 >    Real data_[Dim];
408 >        
409 >  };
410  
411 <    }
411 >  /** unary minus*/
412 >  template<typename Real, unsigned int Dim>    
413 >  inline Vector<Real, Dim> operator -(const Vector<Real, Dim>& v1){
414 >    Vector<Real, Dim> tmp(v1);
415 >    tmp.negate();
416 >    return tmp;
417 >  }
418  
419 +  /**
420 +   * Return the sum of two vectors  (v1 - v2).
421 +   * @return the sum of two vectors
422 +   * @param v1 the first vector
423 +   * @param v2 the second vector
424 +   */  
425 +  template<typename Real, unsigned int Dim>    
426 +  inline Vector<Real, Dim> operator +(const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) {
427 +    Vector<Real, Dim> result;
428 +        
429 +    result.add(v1, v2);
430 +    return result;        
431 +  }
432 +
433 +  /**
434 +   * Return the difference of two vectors  (v1 - v2).
435 +   * @return the difference of two vectors
436 +   * @param v1 the first vector
437 +   * @param v2 the second vector
438 +   */  
439 +  template<typename Real, unsigned int Dim>    
440 +  Vector<Real, Dim> operator -(const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) {
441 +    Vector<Real, Dim> result;
442 +    result.sub(v1, v2);
443 +    return result;        
444 +  }
445      
446 <    /**
447 <     * Returns the dot product of two Vectors
448 <     * @param v1 first vector
449 <     * @param v2 second vector
450 <     * @return the dot product of v1 and v2
451 <     */
452 <    template<typename Real, unsigned int Dim>    
453 <    inline Real dot( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) {
454 <                Real tmp;
455 <                tmp = 0;
446 >  /**
447 >   * Returns the vaule of scalar multiplication of this vector v1 (v1 * r).
448 >   * @return  the vaule of scalar multiplication of this vector
449 >   * @param v1 the source vector
450 >   * @param s the scalar value
451 >   */
452 >  template<typename Real, unsigned int Dim>                
453 >  Vector<Real, Dim> operator * ( const Vector<Real, Dim>& v1, Real s) {      
454 >    Vector<Real, Dim> result;
455 >    result.mul(v1,s);
456 >    return result;          
457 >  }
458 >    
459 >  /**
460 >   * Returns the vaule of scalar multiplication of this vector v1 (v1 * r).
461 >   * @return  the vaule of scalar multiplication of this vector
462 >   * @param s the scalar value
463 >   * @param v1 the source vector
464 >   */  
465 >  template<typename Real, unsigned int Dim>
466 >  Vector<Real, Dim> operator * ( Real s, const Vector<Real, Dim>& v1 ) {
467 >    Vector<Real, Dim> result;
468 >    result.mul(v1, s);
469 >    return result;          
470 >  }
471  
472 <                for (unsigned int i = 0; i < Dim; i++)
473 <                        tmp += v1[i] + v2[i];
474 <                
475 <                return tmp;
476 <    }
472 >  /**
473 >   * Returns the  value of division of a vector by a scalar.
474 >   * @return  the vaule of scalar division of this vector
475 >   * @param v1 the source vector
476 >   * @param s the scalar value
477 >   */
478 >  template<typename Real, unsigned int Dim>    
479 >  Vector<Real, Dim> operator / ( const Vector<Real, Dim>& v1, Real s) {      
480 >    Vector<Real, Dim> result;
481 >    result.div( v1,s);
482 >    return result;          
483 >  }
484 >    
485 >  /**
486 >   * Returns the dot product of two Vectors
487 >   * @param v1 first vector
488 >   * @param v2 second vector
489 >   * @return the dot product of v1 and v2
490 >   */
491 >  template<typename Real, unsigned int Dim>    
492 >  inline Real dot( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) {
493 >    Real tmp;
494 >    tmp = 0;
495  
496 <    /**
497 <     * Returns the distance between  two Vectors
419 <     * @param v1 first vector
420 <     * @param v2 second vector
421 <     * @return the distance between v1 and v2
422 <     */
423 <    template<typename Real, unsigned int Dim>    
424 <    inline Real distance( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) {
425 <        Vector<Real, Dim> tempVector = v1 - v2;
426 <        return tempVector.length();
427 <    }
496 >    for (unsigned int i = 0; i < Dim; i++)
497 >      tmp += v1[i] * v2[i];
498  
499 <    /**
500 <     * Returns the squared distance between  two Vectors
431 <     * @param v1 first vector
432 <     * @param v2 second vector
433 <     * @return the squared distance between v1 and v2
434 <     */
435 <    template<typename Real, unsigned int Dim>
436 <    inline Real distanceSquare( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) {
437 <        Vector<Real, Dim> tempVector = v1 - v2;
438 <        return tempVector.lengthSquare();
439 <    }
499 >    return tmp;
500 >  }
501  
502 <    /**
503 <     * Write to an output stream
504 <     */
505 <    template<typename Real, unsigned int Dim>
506 <    std::ostream &operator<< ( std::ostream& o, const Vector<Real, Dim>& v1 ) {
502 >
503 >  
504 >
505 >  /**
506 >   * Returns the wide dot product of three Vectors.  Compare with
507 >   * Rapaport's VWDot function.
508 >   *
509 >   * @param v1 first vector
510 >   * @param v2 second vector
511 >   * @param v3 third vector
512 >   * @return the wide dot product of v1, v2, and v3.
513 >   */
514 >  template<typename Real, unsigned int Dim>    
515 >  inline Real dot( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2, const Vector<Real, Dim>& v3 ) {
516 >    Real tmp;
517 >    tmp = 0;
518 >
519 >    for (unsigned int i = 0; i < Dim; i++)
520 >      tmp += v1[i] * v2[i] * v3[i];
521 >
522 >    return tmp;
523 >  }
524 >
525 >
526 >  /**
527 >   * Returns the distance between  two Vectors
528 >   * @param v1 first vector
529 >   * @param v2 second vector
530 >   * @return the distance between v1 and v2
531 >   */  
532 >  template<typename Real, unsigned int Dim>    
533 >  inline Real distance( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) {
534 >    Vector<Real, Dim> tempVector = v1 - v2;
535 >    return tempVector.length();
536 >  }
537 >
538 >  /**
539 >   * Returns the squared distance between  two Vectors
540 >   * @param v1 first vector
541 >   * @param v2 second vector
542 >   * @return the squared distance between v1 and v2
543 >   */
544 >  template<typename Real, unsigned int Dim>
545 >  inline Real distanceSquare( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) {
546 >    Vector<Real, Dim> tempVector = v1 - v2;
547 >    return tempVector.lengthSquare();
548 >  }
549 >
550 >  /**
551 >   * Write to an output stream
552 >   */
553 >  template<typename Real, unsigned int Dim>
554 >  std::ostream &operator<< ( std::ostream& o, const Vector<Real, Dim>& v) {
555 >
556 >    o << "[ ";
557          
558 <        return o;        
558 >    for (unsigned int i = 0 ; i< Dim; i++) {
559 >      o << v[i];
560 >
561 >      if (i  != Dim -1) {
562 >        o<< ", ";
563 >      }
564      }
565 +
566 +    o << " ]";
567 +    return o;        
568 +  }
569      
570   }
571   #endif

Comparing trunk/src/math/Vector.hpp (property svn:keywords):
Revision 76 by tim, Thu Oct 14 23:28:09 2004 UTC vs.
Revision 1615 by gezelter, Fri Aug 26 17:55:44 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines