1 |
/* Copyright (c) 2008, 2010 The University of Notre Dame. All Rights Reserved. |
2 |
* |
3 |
* The University of Notre Dame grants you ("Licensee") a |
4 |
* non-exclusive, royalty free, license to use, modify and |
5 |
* redistribute this software in source and binary code form, provided |
6 |
* that the following conditions are met: |
7 |
* |
8 |
* 1. Redistributions of source code must retain the above copyright |
9 |
* notice, this list of conditions and the following disclaimer. |
10 |
* |
11 |
* 2. Redistributions in binary form must reproduce the above copyright |
12 |
* notice, this list of conditions and the following disclaimer in the |
13 |
* documentation and/or other materials provided with the |
14 |
* distribution. |
15 |
* |
16 |
* This software is provided "AS IS," without a warranty of any |
17 |
* kind. All express or implied conditions, representations and |
18 |
* warranties, including any implied warranty of merchantability, |
19 |
* fitness for a particular purpose or non-infringement, are hereby |
20 |
* excluded. The University of Notre Dame and its licensors shall not |
21 |
* be liable for any damages suffered by licensee as a result of |
22 |
* using, modifying or distributing the software or its |
23 |
* derivatives. In no event will the University of Notre Dame or its |
24 |
* licensors be liable for any lost revenue, profit or data, or for |
25 |
* direct, indirect, special, consequential, incidental or punitive |
26 |
* damages, however caused and regardless of the theory of liability, |
27 |
* arising out of the use of or inability to use software, even if the |
28 |
* University of Notre Dame has been advised of the possibility of |
29 |
* such damages. |
30 |
* |
31 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
32 |
* research, please cite the appropriate papers when you publish your |
33 |
* work. Good starting points are: |
34 |
* |
35 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
36 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
37 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
38 |
* [4] Vardeman & Gezelter, in progress (2009). |
39 |
* |
40 |
* |
41 |
* Triangle.cpp |
42 |
* |
43 |
* Purpose: Provide basic triangle object for OpenMD |
44 |
* |
45 |
* Created by Charles F. Vardeman II on 29 July 2008. |
46 |
* @author Charles F. Vardeman II |
47 |
* @version $Id$ |
48 |
* |
49 |
*/ |
50 |
|
51 |
#include "math/Triangle.hpp" |
52 |
|
53 |
using namespace OpenMD; |
54 |
|
55 |
|
56 |
Triangle::Triangle() : HaveNormal_(false), HaveUnitNormal_(false), HaveCentroid_(false), |
57 |
HaveArea_(false), area_(0.0), normal_(V3Zero), |
58 |
centroid_(V3Zero), facetVelocity_(V3Zero), mass_(0.0), |
59 |
a_(V3Zero), b_(V3Zero), c_(V3Zero){ |
60 |
} |
61 |
|
62 |
void Triangle::addVertices(Vector3d P1, Vector3d P2, Vector3d P3){ |
63 |
vertices_[0] = P1; |
64 |
vertices_[1] = P2; |
65 |
vertices_[2] = P3; |
66 |
|
67 |
// Compute some quantites like a,b,c |
68 |
a_ = P1-P2; |
69 |
b_ = P1-P3; |
70 |
c_ = P2-P3; |
71 |
} |
72 |
|
73 |
|
74 |
RealType Triangle::computeArea(){ |
75 |
HaveArea_ = true; |
76 |
area_ = getNormal().length() * 0.5; |
77 |
return area_; |
78 |
} |
79 |
// This should return the normal for our calculations. |
80 |
Vector3d Triangle::computeNormal(){ |
81 |
HaveNormal_ = true; |
82 |
normal_ = cross(a_,b_); |
83 |
return normal_; |
84 |
} |
85 |
// This should return the normal for our calculations. |
86 |
Vector3d Triangle::computeUnitNormal(){ |
87 |
HaveUnitNormal_ = true; |
88 |
unitnormal_ = cross(a_,b_); |
89 |
unitnormal_.normalize(); |
90 |
return unitnormal_; |
91 |
} |
92 |
|
93 |
Vector3d Triangle::computeCentroid(){ |
94 |
HaveCentroid_ = true; |
95 |
centroid_ = (vertices_[0] + vertices_[1] + vertices_[2])/3.0; |
96 |
return centroid_; |
97 |
} |
98 |
|
99 |
|
100 |
Mat3x3d Triangle::computeHydrodynamicTensor(RealType viscosity) { |
101 |
|
102 |
Vector3d u0 = -a_; |
103 |
Vector3d v0 = centroid_ - vertices_[0]; |
104 |
RealType s0 = 0.5*cross(u0,v0).length(); |
105 |
|
106 |
Vector3d u1 = -c_; |
107 |
Vector3d v1 = centroid_ - vertices_[1]; |
108 |
RealType s1 = 0.5*cross(u1,v1).length(); |
109 |
|
110 |
Vector3d u2 = b_; |
111 |
Vector3d v2 = centroid_ - vertices_[2]; |
112 |
RealType s2 = 0.5*cross(u2,v2).length(); |
113 |
|
114 |
Mat3x3d H; |
115 |
H = hydro_tensor(centroid_,centroid_,vertices_[1],vertices_[0],s0,viscosity)+ |
116 |
hydro_tensor(centroid_,centroid_,vertices_[1],vertices_[2],s1,viscosity)+ |
117 |
hydro_tensor(centroid_,centroid_,vertices_[2],vertices_[0],s2,viscosity); |
118 |
|
119 |
return H.inverse(); |
120 |
} |
121 |
|
122 |
Mat3x3d Triangle::hydro_tensor( |
123 |
const Vector3d& ri, |
124 |
const Vector3d& rj0, |
125 |
const Vector3d& rj1, |
126 |
const Vector3d& rj2, |
127 |
RealType s, RealType viscosity){ |
128 |
|
129 |
Vector3d v2 = (rj0 + rj1 + rj2)/3.0; // sub-centroid |
130 |
Vector3d dr = ri - v2; // real centroid to sub-centroid |
131 |
RealType l2 = 1.0/dr.lengthSquare(); |
132 |
|
133 |
Mat3x3d G; |
134 |
G = (SquareMatrix3<RealType>::identity() + outProduct(dr,dr)*l2)*sqrt(l2); |
135 |
|
136 |
G *= 0.125/3.14159285358979; |
137 |
G *= s/viscosity; |
138 |
return G; |
139 |
} |