ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/math/SquareMatrix3.hpp
(Generate patch)

Comparing trunk/src/math/SquareMatrix3.hpp (file contents):
Revision 883 by tim, Thu Feb 2 17:14:15 2006 UTC vs.
Revision 2000 by gezelter, Sat May 31 22:35:05 2014 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 47 | Line 48
48   */
49   #ifndef MATH_SQUAREMATRIX3_HPP
50   #define  MATH_SQUAREMATRIX3_HPP
51 <
51 > #include "config.h"
52 > #include <cmath>
53 > #include <vector>
54   #include "Quaternion.hpp"
55   #include "SquareMatrix.hpp"
56   #include "Vector3.hpp"
57   #include "utils/NumericConstant.hpp"
58 < namespace oopse {
58 > namespace OpenMD {
59  
60    template<typename Real>
61    class SquareMatrix3 : public SquareMatrix<Real, 3> {
# Line 109 | Line 112 | namespace oopse {
112        return *this;
113      }
114  
115 +    
116      /**
117       * Sets this matrix to a rotation matrix by three euler angles
118       * @ param euler
# Line 121 | Line 125 | namespace oopse {
125       * Sets this matrix to a rotation matrix by three euler angles
126       * @param phi
127       * @param theta
128 <     * @psi theta
128 >     * @param psi
129       */
130      void setupRotMat(Real phi, Real theta, Real psi) {
131        Real sphi, stheta, spsi;
# Line 166 | Line 170 | namespace oopse {
170      void setupRotMat(Real w, Real x, Real y, Real z) {
171        Quaternion<Real> q(w, x, y, z);
172        *this = q.toRotationMatrix3();
173 +    }
174 +
175 +    void setupSkewMat(Vector3<Real> v) {
176 +        setupSkewMat(v[0], v[1], v[2]);
177 +    }
178 +
179 +    void setupSkewMat(Real v1, Real v2, Real v3) {
180 +        this->data_[0][0] = 0;
181 +        this->data_[0][1] = -v3;
182 +        this->data_[0][2] = v2;
183 +        this->data_[1][0] = v3;
184 +        this->data_[1][1] = 0;
185 +        this->data_[1][2] = -v1;
186 +        this->data_[2][0] = -v2;
187 +        this->data_[2][1] = v1;
188 +        this->data_[2][2] = 0;
189 +        
190 +        
191      }
192  
193 +
194      /**
195       * Returns the quaternion from this rotation matrix
196       * @return the quaternion from this rotation matrix
# Line 224 | Line 247 | namespace oopse {
247       * @return the euler angles in a vector
248       * @exception invalid rotation matrix
249       * We use so-called "x-convention", which is the most common definition.
250 <     * In this convention, the rotation given by Euler angles (phi, theta, psi), where the first
251 <     * rotation is by an angle phi about the z-axis, the second is by an angle  
252 <     * theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the
253 <     * z-axis (again).
250 >     * In this convention, the rotation given by Euler angles (phi, theta,
251 >     * psi), where the first rotation is by an angle phi about the z-axis,
252 >     * the second is by an angle theta (0 <= theta <= 180) about the x-axis,
253 >     * and the third is by an angle psi about the z-axis (again).
254       */            
255      Vector3<Real> toEulerAngles() {
256        Vector3<Real> myEuler;
# Line 239 | Line 262 | namespace oopse {
262                  
263        // set the tolerance for Euler angles and rotation elements
264  
265 <      theta = acos(std::min(1.0, std::max(-1.0,this->data_[2][2])));
265 >      theta = acos(std::min((RealType)1.0, std::max((RealType)-1.0,this->data_[2][2])));
266        ctheta = this->data_[2][2];
267        stheta = sqrt(1.0 - ctheta * ctheta);
268  
269 <      // when sin(theta) is close to 0, we need to consider singularity
270 <      // In this case, we can assign an arbitary value to phi (or psi), and then determine
271 <      // the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0
272 <      // in cases of singularity.  
269 >      // when sin(theta) is close to 0, we need to consider
270 >      // singularity In this case, we can assign an arbitary value to
271 >      // phi (or psi), and then determine the psi (or phi) or
272 >      // vice-versa. We'll assume that phi always gets the rotation,
273 >      // and psi is 0 in cases of singularity.
274        // we use atan2 instead of atan, since atan2 will give us -Pi to Pi.
275 <      // Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never
276 <      // change the sign of both of the parameters passed to atan2.
275 >      // Since 0 <= theta <= 180, sin(theta) will be always
276 >      // non-negative. Therefore, it will never change the sign of both of
277 >      // the parameters passed to atan2.
278  
279 <      if (fabs(stheta) <= oopse::epsilon){
279 >      if (fabs(stheta) < 1e-6){
280          psi = 0.0;
281          phi = atan2(-this->data_[1][0], this->data_[0][0]);  
282        }
# Line 263 | Line 288 | namespace oopse {
288  
289        //wrap phi and psi, make sure they are in the range from 0 to 2*Pi
290        if (phi < 0)
291 <        phi += M_PI;
291 >        phi += 2.0 * M_PI;
292  
293        if (psi < 0)
294 <        psi += M_PI;
294 >        psi += 2.0 * M_PI;
295  
296        myEuler[0] = phi;
297        myEuler[1] = theta;
# Line 298 | Line 323 | namespace oopse {
323       */
324      SquareMatrix3<Real>  inverse() const {
325        SquareMatrix3<Real> m;
326 <      double det = determinant();
327 <      if (fabs(det) <= oopse::epsilon) {
326 >      RealType det = determinant();
327 >      if (fabs(det) <= OpenMD::epsilon) {
328          //"The method was called on a matrix with |determinant| <= 1e-6.",
329          //"This is a runtime or a programming error in your application.");
330 <      }
330 >        std::vector<int> zeroDiagElementIndex;
331 >        for (int i =0; i < 3; ++i) {
332 >            if (fabs(this->data_[i][i]) <= OpenMD::epsilon) {
333 >                zeroDiagElementIndex.push_back(i);
334 >            }
335 >        }
336  
337 <      m(0, 0) = this->data_[1][1]*this->data_[2][2] - this->data_[1][2]*this->data_[2][1];
338 <      m(1, 0) = this->data_[1][2]*this->data_[2][0] - this->data_[1][0]*this->data_[2][2];
339 <      m(2, 0) = this->data_[1][0]*this->data_[2][1] - this->data_[1][1]*this->data_[2][0];
340 <      m(0, 1) = this->data_[2][1]*this->data_[0][2] - this->data_[2][2]*this->data_[0][1];
311 <      m(1, 1) = this->data_[2][2]*this->data_[0][0] - this->data_[2][0]*this->data_[0][2];
312 <      m(2, 1) = this->data_[2][0]*this->data_[0][1] - this->data_[2][1]*this->data_[0][0];
313 <      m(0, 2) = this->data_[0][1]*this->data_[1][2] - this->data_[0][2]*this->data_[1][1];
314 <      m(1, 2) = this->data_[0][2]*this->data_[1][0] - this->data_[0][0]*this->data_[1][2];
315 <      m(2, 2) = this->data_[0][0]*this->data_[1][1] - this->data_[0][1]*this->data_[1][0];
337 >        if (zeroDiagElementIndex.size() == 2) {
338 >            int index = zeroDiagElementIndex[0];
339 >            m(index, index) = 1.0 / this->data_[index][index];
340 >        }else if (zeroDiagElementIndex.size() == 1) {
341  
342 <      m /= det;
342 >            int a = (zeroDiagElementIndex[0] + 1) % 3;
343 >            int b = (zeroDiagElementIndex[0] + 2) %3;
344 >            RealType denom = this->data_[a][a] * this->data_[b][b] - this->data_[b][a]*this->data_[a][b];
345 >            m(a, a) = this->data_[b][b] /denom;
346 >            m(b, a) = -this->data_[b][a]/denom;
347 >
348 >            m(a,b) = -this->data_[a][b]/denom;
349 >            m(b, b) = this->data_[a][a]/denom;
350 >                
351 >        }
352 >      
353 > /*
354 >        for(std::vector<int>::iterator iter = zeroDiagElementIndex.begin(); iter != zeroDiagElementIndex.end() ++iter) {
355 >            if (this->data_[*iter][0] > OpenMD::epsilon || this->data_[*iter][1] ||this->data_[*iter][2] ||
356 >                this->data_[0][*iter] > OpenMD::epsilon || this->data_[1][*iter] ||this->data_[2][*iter] ) {
357 >                std::cout << "can not inverse matrix" << std::endl;
358 >            }
359 >        }
360 > */
361 >      } else {
362 >
363 >          m(0, 0) = this->data_[1][1]*this->data_[2][2] - this->data_[1][2]*this->data_[2][1];
364 >          m(1, 0) = this->data_[1][2]*this->data_[2][0] - this->data_[1][0]*this->data_[2][2];
365 >          m(2, 0) = this->data_[1][0]*this->data_[2][1] - this->data_[1][1]*this->data_[2][0];
366 >          m(0, 1) = this->data_[2][1]*this->data_[0][2] - this->data_[2][2]*this->data_[0][1];
367 >          m(1, 1) = this->data_[2][2]*this->data_[0][0] - this->data_[2][0]*this->data_[0][2];
368 >          m(2, 1) = this->data_[2][0]*this->data_[0][1] - this->data_[2][1]*this->data_[0][0];
369 >          m(0, 2) = this->data_[0][1]*this->data_[1][2] - this->data_[0][2]*this->data_[1][1];
370 >          m(1, 2) = this->data_[0][2]*this->data_[1][0] - this->data_[0][0]*this->data_[1][2];
371 >          m(2, 2) = this->data_[0][0]*this->data_[1][1] - this->data_[0][1]*this->data_[1][0];
372 >
373 >          m /= det;
374 >        }
375        return m;
376      }
377  
# Line 363 | Line 420 | namespace oopse {
420      Vector3<Real> v_maxI, v_k, v_j;
421  
422      // diagonalize using Jacobi
423 <    jacobi(a, w, v);
423 >    SquareMatrix3<Real>::jacobi(a, w, v);
424      // if all the eigenvalues are the same, return identity matrix
425      if (w[0] == w[1] && w[0] == w[2] ) {
426        v = SquareMatrix3<Real>::identity();
# Line 509 | Line 566 | namespace oopse {
566    }
567  
568      
569 <  typedef SquareMatrix3<double> Mat3x3d;
570 <  typedef SquareMatrix3<double> RotMat3x3d;
569 >  typedef SquareMatrix3<RealType> Mat3x3d;
570 >  typedef SquareMatrix3<RealType> RotMat3x3d;
571  
572 < } //namespace oopse
572 >  const Mat3x3d M3Zero(0.0);
573 >
574 >
575 > } //namespace OpenMD
576   #endif // MATH_SQUAREMATRIX_HPP
577  

Comparing trunk/src/math/SquareMatrix3.hpp (property svn:keywords):
Revision 883 by tim, Thu Feb 2 17:14:15 2006 UTC vs.
Revision 2000 by gezelter, Sat May 31 22:35:05 2014 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines