6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
/** |
48 |
|
*/ |
49 |
|
#ifndef MATH_SQUAREMATRIX3_HPP |
50 |
|
#define MATH_SQUAREMATRIX3_HPP |
51 |
< |
|
51 |
> |
#include "config.h" |
52 |
> |
#include <cmath> |
53 |
> |
#include <vector> |
54 |
|
#include "Quaternion.hpp" |
55 |
|
#include "SquareMatrix.hpp" |
56 |
|
#include "Vector3.hpp" |
57 |
|
#include "utils/NumericConstant.hpp" |
58 |
< |
namespace oopse { |
58 |
> |
namespace OpenMD { |
59 |
|
|
60 |
|
template<typename Real> |
61 |
|
class SquareMatrix3 : public SquareMatrix<Real, 3> { |
112 |
|
return *this; |
113 |
|
} |
114 |
|
|
115 |
+ |
|
116 |
|
/** |
117 |
|
* Sets this matrix to a rotation matrix by three euler angles |
118 |
|
* @ param euler |
125 |
|
* Sets this matrix to a rotation matrix by three euler angles |
126 |
|
* @param phi |
127 |
|
* @param theta |
128 |
< |
* @psi theta |
128 |
> |
* @param psi |
129 |
|
*/ |
130 |
|
void setupRotMat(Real phi, Real theta, Real psi) { |
131 |
|
Real sphi, stheta, spsi; |
170 |
|
void setupRotMat(Real w, Real x, Real y, Real z) { |
171 |
|
Quaternion<Real> q(w, x, y, z); |
172 |
|
*this = q.toRotationMatrix3(); |
173 |
+ |
} |
174 |
+ |
|
175 |
+ |
void setupSkewMat(Vector3<Real> v) { |
176 |
+ |
setupSkewMat(v[0], v[1], v[2]); |
177 |
+ |
} |
178 |
+ |
|
179 |
+ |
void setupSkewMat(Real v1, Real v2, Real v3) { |
180 |
+ |
this->data_[0][0] = 0; |
181 |
+ |
this->data_[0][1] = -v3; |
182 |
+ |
this->data_[0][2] = v2; |
183 |
+ |
this->data_[1][0] = v3; |
184 |
+ |
this->data_[1][1] = 0; |
185 |
+ |
this->data_[1][2] = -v1; |
186 |
+ |
this->data_[2][0] = -v2; |
187 |
+ |
this->data_[2][1] = v1; |
188 |
+ |
this->data_[2][2] = 0; |
189 |
+ |
|
190 |
+ |
|
191 |
|
} |
192 |
|
|
193 |
+ |
|
194 |
|
/** |
195 |
|
* Returns the quaternion from this rotation matrix |
196 |
|
* @return the quaternion from this rotation matrix |
247 |
|
* @return the euler angles in a vector |
248 |
|
* @exception invalid rotation matrix |
249 |
|
* We use so-called "x-convention", which is the most common definition. |
250 |
< |
* In this convention, the rotation given by Euler angles (phi, theta, psi), where the first |
251 |
< |
* rotation is by an angle phi about the z-axis, the second is by an angle |
252 |
< |
* theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the |
253 |
< |
* z-axis (again). |
250 |
> |
* In this convention, the rotation given by Euler angles (phi, theta, |
251 |
> |
* psi), where the first rotation is by an angle phi about the z-axis, |
252 |
> |
* the second is by an angle theta (0 <= theta <= 180) about the x-axis, |
253 |
> |
* and the third is by an angle psi about the z-axis (again). |
254 |
|
*/ |
255 |
|
Vector3<Real> toEulerAngles() { |
256 |
|
Vector3<Real> myEuler; |
262 |
|
|
263 |
|
// set the tolerance for Euler angles and rotation elements |
264 |
|
|
265 |
< |
theta = acos(std::min(1.0, std::max(-1.0,this->data_[2][2]))); |
265 |
> |
theta = acos(std::min((RealType)1.0, std::max((RealType)-1.0,this->data_[2][2]))); |
266 |
|
ctheta = this->data_[2][2]; |
267 |
|
stheta = sqrt(1.0 - ctheta * ctheta); |
268 |
|
|
269 |
< |
// when sin(theta) is close to 0, we need to consider singularity |
270 |
< |
// In this case, we can assign an arbitary value to phi (or psi), and then determine |
271 |
< |
// the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0 |
272 |
< |
// in cases of singularity. |
269 |
> |
// when sin(theta) is close to 0, we need to consider |
270 |
> |
// singularity In this case, we can assign an arbitary value to |
271 |
> |
// phi (or psi), and then determine the psi (or phi) or |
272 |
> |
// vice-versa. We'll assume that phi always gets the rotation, |
273 |
> |
// and psi is 0 in cases of singularity. |
274 |
|
// we use atan2 instead of atan, since atan2 will give us -Pi to Pi. |
275 |
< |
// Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never |
276 |
< |
// change the sign of both of the parameters passed to atan2. |
275 |
> |
// Since 0 <= theta <= 180, sin(theta) will be always |
276 |
> |
// non-negative. Therefore, it will never change the sign of both of |
277 |
> |
// the parameters passed to atan2. |
278 |
|
|
279 |
< |
if (fabs(stheta) <= oopse::epsilon){ |
279 |
> |
if (fabs(stheta) < 1e-6){ |
280 |
|
psi = 0.0; |
281 |
|
phi = atan2(-this->data_[1][0], this->data_[0][0]); |
282 |
|
} |
288 |
|
|
289 |
|
//wrap phi and psi, make sure they are in the range from 0 to 2*Pi |
290 |
|
if (phi < 0) |
291 |
< |
phi += M_PI; |
291 |
> |
phi += 2.0 * M_PI; |
292 |
|
|
293 |
|
if (psi < 0) |
294 |
< |
psi += M_PI; |
294 |
> |
psi += 2.0 * M_PI; |
295 |
|
|
296 |
|
myEuler[0] = phi; |
297 |
|
myEuler[1] = theta; |
323 |
|
*/ |
324 |
|
SquareMatrix3<Real> inverse() const { |
325 |
|
SquareMatrix3<Real> m; |
326 |
< |
double det = determinant(); |
327 |
< |
if (fabs(det) <= oopse::epsilon) { |
326 |
> |
RealType det = determinant(); |
327 |
> |
if (fabs(det) <= OpenMD::epsilon) { |
328 |
|
//"The method was called on a matrix with |determinant| <= 1e-6.", |
329 |
|
//"This is a runtime or a programming error in your application."); |
330 |
< |
} |
330 |
> |
std::vector<int> zeroDiagElementIndex; |
331 |
> |
for (int i =0; i < 3; ++i) { |
332 |
> |
if (fabs(this->data_[i][i]) <= OpenMD::epsilon) { |
333 |
> |
zeroDiagElementIndex.push_back(i); |
334 |
> |
} |
335 |
> |
} |
336 |
|
|
337 |
< |
m(0, 0) = this->data_[1][1]*this->data_[2][2] - this->data_[1][2]*this->data_[2][1]; |
338 |
< |
m(1, 0) = this->data_[1][2]*this->data_[2][0] - this->data_[1][0]*this->data_[2][2]; |
339 |
< |
m(2, 0) = this->data_[1][0]*this->data_[2][1] - this->data_[1][1]*this->data_[2][0]; |
340 |
< |
m(0, 1) = this->data_[2][1]*this->data_[0][2] - this->data_[2][2]*this->data_[0][1]; |
311 |
< |
m(1, 1) = this->data_[2][2]*this->data_[0][0] - this->data_[2][0]*this->data_[0][2]; |
312 |
< |
m(2, 1) = this->data_[2][0]*this->data_[0][1] - this->data_[2][1]*this->data_[0][0]; |
313 |
< |
m(0, 2) = this->data_[0][1]*this->data_[1][2] - this->data_[0][2]*this->data_[1][1]; |
314 |
< |
m(1, 2) = this->data_[0][2]*this->data_[1][0] - this->data_[0][0]*this->data_[1][2]; |
315 |
< |
m(2, 2) = this->data_[0][0]*this->data_[1][1] - this->data_[0][1]*this->data_[1][0]; |
337 |
> |
if (zeroDiagElementIndex.size() == 2) { |
338 |
> |
int index = zeroDiagElementIndex[0]; |
339 |
> |
m(index, index) = 1.0 / this->data_[index][index]; |
340 |
> |
}else if (zeroDiagElementIndex.size() == 1) { |
341 |
|
|
342 |
< |
m /= det; |
342 |
> |
int a = (zeroDiagElementIndex[0] + 1) % 3; |
343 |
> |
int b = (zeroDiagElementIndex[0] + 2) %3; |
344 |
> |
RealType denom = this->data_[a][a] * this->data_[b][b] - this->data_[b][a]*this->data_[a][b]; |
345 |
> |
m(a, a) = this->data_[b][b] /denom; |
346 |
> |
m(b, a) = -this->data_[b][a]/denom; |
347 |
> |
|
348 |
> |
m(a,b) = -this->data_[a][b]/denom; |
349 |
> |
m(b, b) = this->data_[a][a]/denom; |
350 |
> |
|
351 |
> |
} |
352 |
> |
|
353 |
> |
/* |
354 |
> |
for(std::vector<int>::iterator iter = zeroDiagElementIndex.begin(); iter != zeroDiagElementIndex.end() ++iter) { |
355 |
> |
if (this->data_[*iter][0] > OpenMD::epsilon || this->data_[*iter][1] ||this->data_[*iter][2] || |
356 |
> |
this->data_[0][*iter] > OpenMD::epsilon || this->data_[1][*iter] ||this->data_[2][*iter] ) { |
357 |
> |
std::cout << "can not inverse matrix" << std::endl; |
358 |
> |
} |
359 |
> |
} |
360 |
> |
*/ |
361 |
> |
} else { |
362 |
> |
|
363 |
> |
m(0, 0) = this->data_[1][1]*this->data_[2][2] - this->data_[1][2]*this->data_[2][1]; |
364 |
> |
m(1, 0) = this->data_[1][2]*this->data_[2][0] - this->data_[1][0]*this->data_[2][2]; |
365 |
> |
m(2, 0) = this->data_[1][0]*this->data_[2][1] - this->data_[1][1]*this->data_[2][0]; |
366 |
> |
m(0, 1) = this->data_[2][1]*this->data_[0][2] - this->data_[2][2]*this->data_[0][1]; |
367 |
> |
m(1, 1) = this->data_[2][2]*this->data_[0][0] - this->data_[2][0]*this->data_[0][2]; |
368 |
> |
m(2, 1) = this->data_[2][0]*this->data_[0][1] - this->data_[2][1]*this->data_[0][0]; |
369 |
> |
m(0, 2) = this->data_[0][1]*this->data_[1][2] - this->data_[0][2]*this->data_[1][1]; |
370 |
> |
m(1, 2) = this->data_[0][2]*this->data_[1][0] - this->data_[0][0]*this->data_[1][2]; |
371 |
> |
m(2, 2) = this->data_[0][0]*this->data_[1][1] - this->data_[0][1]*this->data_[1][0]; |
372 |
> |
|
373 |
> |
m /= det; |
374 |
> |
} |
375 |
|
return m; |
376 |
|
} |
377 |
|
|
420 |
|
Vector3<Real> v_maxI, v_k, v_j; |
421 |
|
|
422 |
|
// diagonalize using Jacobi |
423 |
< |
jacobi(a, w, v); |
423 |
> |
SquareMatrix3<Real>::jacobi(a, w, v); |
424 |
|
// if all the eigenvalues are the same, return identity matrix |
425 |
|
if (w[0] == w[1] && w[0] == w[2] ) { |
426 |
|
v = SquareMatrix3<Real>::identity(); |
566 |
|
} |
567 |
|
|
568 |
|
|
569 |
< |
typedef SquareMatrix3<double> Mat3x3d; |
570 |
< |
typedef SquareMatrix3<double> RotMat3x3d; |
569 |
> |
typedef SquareMatrix3<RealType> Mat3x3d; |
570 |
> |
typedef SquareMatrix3<RealType> RotMat3x3d; |
571 |
|
|
572 |
< |
} //namespace oopse |
572 |
> |
const Mat3x3d M3Zero(0.0); |
573 |
> |
|
574 |
> |
|
575 |
> |
} //namespace OpenMD |
576 |
|
#endif // MATH_SQUAREMATRIX_HPP |
577 |
|
|