ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/math/SquareMatrix3.hpp
Revision: 1610
Committed: Fri Aug 12 14:37:25 2011 UTC (13 years, 8 months ago) by gezelter
File size: 18582 byte(s)
Log Message:
Fixed a clang compilation problem, added the ability to output
particle potential in the dump files.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 /**
43 * @file SquareMatrix3.hpp
44 * @author Teng Lin
45 * @date 10/11/2004
46 * @version 1.0
47 */
48 #ifndef MATH_SQUAREMATRIX3_HPP
49 #define MATH_SQUAREMATRIX3_HPP
50 #include <vector>
51 #include "Quaternion.hpp"
52 #include "SquareMatrix.hpp"
53 #include "Vector3.hpp"
54 #include "utils/NumericConstant.hpp"
55 namespace OpenMD {
56
57 template<typename Real>
58 class SquareMatrix3 : public SquareMatrix<Real, 3> {
59 public:
60
61 typedef Real ElemType;
62 typedef Real* ElemPoinerType;
63
64 /** default constructor */
65 SquareMatrix3() : SquareMatrix<Real, 3>() {
66 }
67
68 /** Constructs and initializes every element of this matrix to a scalar */
69 SquareMatrix3(Real s) : SquareMatrix<Real,3>(s){
70 }
71
72 /** Constructs and initializes from an array */
73 SquareMatrix3(Real* array) : SquareMatrix<Real,3>(array){
74 }
75
76
77 /** copy constructor */
78 SquareMatrix3(const SquareMatrix<Real, 3>& m) : SquareMatrix<Real, 3>(m) {
79 }
80
81 SquareMatrix3( const Vector3<Real>& eulerAngles) {
82 setupRotMat(eulerAngles);
83 }
84
85 SquareMatrix3(Real phi, Real theta, Real psi) {
86 setupRotMat(phi, theta, psi);
87 }
88
89 SquareMatrix3(const Quaternion<Real>& q) {
90 setupRotMat(q);
91
92 }
93
94 SquareMatrix3(Real w, Real x, Real y, Real z) {
95 setupRotMat(w, x, y, z);
96 }
97
98 /** copy assignment operator */
99 SquareMatrix3<Real>& operator =(const SquareMatrix<Real, 3>& m) {
100 if (this == &m)
101 return *this;
102 SquareMatrix<Real, 3>::operator=(m);
103 return *this;
104 }
105
106
107 SquareMatrix3<Real>& operator =(const Quaternion<Real>& q) {
108 this->setupRotMat(q);
109 return *this;
110 }
111
112 /**
113 * Sets this matrix to a rotation matrix by three euler angles
114 * @ param euler
115 */
116 void setupRotMat(const Vector3<Real>& eulerAngles) {
117 setupRotMat(eulerAngles[0], eulerAngles[1], eulerAngles[2]);
118 }
119
120 /**
121 * Sets this matrix to a rotation matrix by three euler angles
122 * @param phi
123 * @param theta
124 * @psi theta
125 */
126 void setupRotMat(Real phi, Real theta, Real psi) {
127 Real sphi, stheta, spsi;
128 Real cphi, ctheta, cpsi;
129
130 sphi = sin(phi);
131 stheta = sin(theta);
132 spsi = sin(psi);
133 cphi = cos(phi);
134 ctheta = cos(theta);
135 cpsi = cos(psi);
136
137 this->data_[0][0] = cpsi * cphi - ctheta * sphi * spsi;
138 this->data_[0][1] = cpsi * sphi + ctheta * cphi * spsi;
139 this->data_[0][2] = spsi * stheta;
140
141 this->data_[1][0] = -spsi * ctheta - ctheta * sphi * cpsi;
142 this->data_[1][1] = -spsi * stheta + ctheta * cphi * cpsi;
143 this->data_[1][2] = cpsi * stheta;
144
145 this->data_[2][0] = stheta * sphi;
146 this->data_[2][1] = -stheta * cphi;
147 this->data_[2][2] = ctheta;
148 }
149
150
151 /**
152 * Sets this matrix to a rotation matrix by quaternion
153 * @param quat
154 */
155 void setupRotMat(const Quaternion<Real>& quat) {
156 setupRotMat(quat.w(), quat.x(), quat.y(), quat.z());
157 }
158
159 /**
160 * Sets this matrix to a rotation matrix by quaternion
161 * @param w the first element
162 * @param x the second element
163 * @param y the third element
164 * @param z the fourth element
165 */
166 void setupRotMat(Real w, Real x, Real y, Real z) {
167 Quaternion<Real> q(w, x, y, z);
168 *this = q.toRotationMatrix3();
169 }
170
171 void setupSkewMat(Vector3<Real> v) {
172 setupSkewMat(v[0], v[1], v[2]);
173 }
174
175 void setupSkewMat(Real v1, Real v2, Real v3) {
176 this->data_[0][0] = 0;
177 this->data_[0][1] = -v3;
178 this->data_[0][2] = v2;
179 this->data_[1][0] = v3;
180 this->data_[1][1] = 0;
181 this->data_[1][2] = -v1;
182 this->data_[2][0] = -v2;
183 this->data_[2][1] = v1;
184 this->data_[2][2] = 0;
185
186
187 }
188
189
190
191 /**
192 * Returns the quaternion from this rotation matrix
193 * @return the quaternion from this rotation matrix
194 * @exception invalid rotation matrix
195 */
196 Quaternion<Real> toQuaternion() {
197 Quaternion<Real> q;
198 Real t, s;
199 Real ad1, ad2, ad3;
200 t = this->data_[0][0] + this->data_[1][1] + this->data_[2][2] + 1.0;
201
202 if( t > NumericConstant::epsilon ){
203
204 s = 0.5 / sqrt( t );
205 q[0] = 0.25 / s;
206 q[1] = (this->data_[1][2] - this->data_[2][1]) * s;
207 q[2] = (this->data_[2][0] - this->data_[0][2]) * s;
208 q[3] = (this->data_[0][1] - this->data_[1][0]) * s;
209 } else {
210
211 ad1 = this->data_[0][0];
212 ad2 = this->data_[1][1];
213 ad3 = this->data_[2][2];
214
215 if( ad1 >= ad2 && ad1 >= ad3 ){
216
217 s = 0.5 / sqrt( 1.0 + this->data_[0][0] - this->data_[1][1] - this->data_[2][2] );
218 q[0] = (this->data_[1][2] - this->data_[2][1]) * s;
219 q[1] = 0.25 / s;
220 q[2] = (this->data_[0][1] + this->data_[1][0]) * s;
221 q[3] = (this->data_[0][2] + this->data_[2][0]) * s;
222 } else if ( ad2 >= ad1 && ad2 >= ad3 ) {
223 s = 0.5 / sqrt( 1.0 + this->data_[1][1] - this->data_[0][0] - this->data_[2][2] );
224 q[0] = (this->data_[2][0] - this->data_[0][2] ) * s;
225 q[1] = (this->data_[0][1] + this->data_[1][0]) * s;
226 q[2] = 0.25 / s;
227 q[3] = (this->data_[1][2] + this->data_[2][1]) * s;
228 } else {
229
230 s = 0.5 / sqrt( 1.0 + this->data_[2][2] - this->data_[0][0] - this->data_[1][1] );
231 q[0] = (this->data_[0][1] - this->data_[1][0]) * s;
232 q[1] = (this->data_[0][2] + this->data_[2][0]) * s;
233 q[2] = (this->data_[1][2] + this->data_[2][1]) * s;
234 q[3] = 0.25 / s;
235 }
236 }
237
238 return q;
239
240 }
241
242 /**
243 * Returns the euler angles from this rotation matrix
244 * @return the euler angles in a vector
245 * @exception invalid rotation matrix
246 * We use so-called "x-convention", which is the most common definition.
247 * In this convention, the rotation given by Euler angles (phi, theta,
248 * psi), where the first rotation is by an angle phi about the z-axis,
249 * the second is by an angle theta (0 <= theta <= 180) about the x-axis,
250 * and the third is by an angle psi about the z-axis (again).
251 */
252 Vector3<Real> toEulerAngles() {
253 Vector3<Real> myEuler;
254 Real phi;
255 Real theta;
256 Real psi;
257 Real ctheta;
258 Real stheta;
259
260 // set the tolerance for Euler angles and rotation elements
261
262 theta = acos(std::min((RealType)1.0, std::max((RealType)-1.0,this->data_[2][2])));
263 ctheta = this->data_[2][2];
264 stheta = sqrt(1.0 - ctheta * ctheta);
265
266 // when sin(theta) is close to 0, we need to consider
267 // singularity In this case, we can assign an arbitary value to
268 // phi (or psi), and then determine the psi (or phi) or
269 // vice-versa. We'll assume that phi always gets the rotation,
270 // and psi is 0 in cases of singularity.
271 // we use atan2 instead of atan, since atan2 will give us -Pi to Pi.
272 // Since 0 <= theta <= 180, sin(theta) will be always
273 // non-negative. Therefore, it will never change the sign of both of
274 // the parameters passed to atan2.
275
276 if (fabs(stheta) < 1e-6){
277 psi = 0.0;
278 phi = atan2(-this->data_[1][0], this->data_[0][0]);
279 }
280 // we only have one unique solution
281 else{
282 phi = atan2(this->data_[2][0], -this->data_[2][1]);
283 psi = atan2(this->data_[0][2], this->data_[1][2]);
284 }
285
286 //wrap phi and psi, make sure they are in the range from 0 to 2*Pi
287 if (phi < 0)
288 phi += 2.0 * M_PI;
289
290 if (psi < 0)
291 psi += 2.0 * M_PI;
292
293 myEuler[0] = phi;
294 myEuler[1] = theta;
295 myEuler[2] = psi;
296
297 return myEuler;
298 }
299
300 /** Returns the determinant of this matrix. */
301 Real determinant() const {
302 Real x,y,z;
303
304 x = this->data_[0][0] * (this->data_[1][1] * this->data_[2][2] - this->data_[1][2] * this->data_[2][1]);
305 y = this->data_[0][1] * (this->data_[1][2] * this->data_[2][0] - this->data_[1][0] * this->data_[2][2]);
306 z = this->data_[0][2] * (this->data_[1][0] * this->data_[2][1] - this->data_[1][1] * this->data_[2][0]);
307
308 return(x + y + z);
309 }
310
311 /** Returns the trace of this matrix. */
312 Real trace() const {
313 return this->data_[0][0] + this->data_[1][1] + this->data_[2][2];
314 }
315
316 /**
317 * Sets the value of this matrix to the inversion of itself.
318 * @note since simple algorithm can be applied to inverse the 3 by 3 matrix, we hide the
319 * implementation of inverse in SquareMatrix class
320 */
321 SquareMatrix3<Real> inverse() const {
322 SquareMatrix3<Real> m;
323 RealType det = determinant();
324 if (fabs(det) <= OpenMD::epsilon) {
325 //"The method was called on a matrix with |determinant| <= 1e-6.",
326 //"This is a runtime or a programming error in your application.");
327 std::vector<int> zeroDiagElementIndex;
328 for (int i =0; i < 3; ++i) {
329 if (fabs(this->data_[i][i]) <= OpenMD::epsilon) {
330 zeroDiagElementIndex.push_back(i);
331 }
332 }
333
334 if (zeroDiagElementIndex.size() == 2) {
335 int index = zeroDiagElementIndex[0];
336 m(index, index) = 1.0 / this->data_[index][index];
337 }else if (zeroDiagElementIndex.size() == 1) {
338
339 int a = (zeroDiagElementIndex[0] + 1) % 3;
340 int b = (zeroDiagElementIndex[0] + 2) %3;
341 RealType denom = this->data_[a][a] * this->data_[b][b] - this->data_[b][a]*this->data_[a][b];
342 m(a, a) = this->data_[b][b] /denom;
343 m(b, a) = -this->data_[b][a]/denom;
344
345 m(a,b) = -this->data_[a][b]/denom;
346 m(b, b) = this->data_[a][a]/denom;
347
348 }
349
350 /*
351 for(std::vector<int>::iterator iter = zeroDiagElementIndex.begin(); iter != zeroDiagElementIndex.end() ++iter) {
352 if (this->data_[*iter][0] > OpenMD::epsilon || this->data_[*iter][1] ||this->data_[*iter][2] ||
353 this->data_[0][*iter] > OpenMD::epsilon || this->data_[1][*iter] ||this->data_[2][*iter] ) {
354 std::cout << "can not inverse matrix" << std::endl;
355 }
356 }
357 */
358 } else {
359
360 m(0, 0) = this->data_[1][1]*this->data_[2][2] - this->data_[1][2]*this->data_[2][1];
361 m(1, 0) = this->data_[1][2]*this->data_[2][0] - this->data_[1][0]*this->data_[2][2];
362 m(2, 0) = this->data_[1][0]*this->data_[2][1] - this->data_[1][1]*this->data_[2][0];
363 m(0, 1) = this->data_[2][1]*this->data_[0][2] - this->data_[2][2]*this->data_[0][1];
364 m(1, 1) = this->data_[2][2]*this->data_[0][0] - this->data_[2][0]*this->data_[0][2];
365 m(2, 1) = this->data_[2][0]*this->data_[0][1] - this->data_[2][1]*this->data_[0][0];
366 m(0, 2) = this->data_[0][1]*this->data_[1][2] - this->data_[0][2]*this->data_[1][1];
367 m(1, 2) = this->data_[0][2]*this->data_[1][0] - this->data_[0][0]*this->data_[1][2];
368 m(2, 2) = this->data_[0][0]*this->data_[1][1] - this->data_[0][1]*this->data_[1][0];
369
370 m /= det;
371 }
372 return m;
373 }
374
375 SquareMatrix3<Real> transpose() const{
376 SquareMatrix3<Real> result;
377
378 for (unsigned int i = 0; i < 3; i++)
379 for (unsigned int j = 0; j < 3; j++)
380 result(j, i) = this->data_[i][j];
381
382 return result;
383 }
384 /**
385 * Extract the eigenvalues and eigenvectors from a 3x3 matrix.
386 * The eigenvectors (the columns of V) will be normalized.
387 * The eigenvectors are aligned optimally with the x, y, and z
388 * axes respectively.
389 * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
390 * overwritten
391 * @param w will contain the eigenvalues of the matrix On return of this function
392 * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
393 * normalized and mutually orthogonal.
394 * @warning a will be overwritten
395 */
396 static void diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w, SquareMatrix3<Real>& v);
397 };
398 /*=========================================================================
399
400 Program: Visualization Toolkit
401 Module: $RCSfile: SquareMatrix3.hpp,v $
402
403 Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
404 All rights reserved.
405 See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
406
407 This software is distributed WITHOUT ANY WARRANTY; without even
408 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
409 PURPOSE. See the above copyright notice for more information.
410
411 =========================================================================*/
412 template<typename Real>
413 void SquareMatrix3<Real>::diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w,
414 SquareMatrix3<Real>& v) {
415 int i,j,k,maxI;
416 Real tmp, maxVal;
417 Vector3<Real> v_maxI, v_k, v_j;
418
419 // diagonalize using Jacobi
420 SquareMatrix3<Real>::jacobi(a, w, v);
421 // if all the eigenvalues are the same, return identity matrix
422 if (w[0] == w[1] && w[0] == w[2] ) {
423 v = SquareMatrix3<Real>::identity();
424 return;
425 }
426
427 // transpose temporarily, it makes it easier to sort the eigenvectors
428 v = v.transpose();
429
430 // if two eigenvalues are the same, re-orthogonalize to optimally line
431 // up the eigenvectors with the x, y, and z axes
432 for (i = 0; i < 3; i++) {
433 if (w((i+1)%3) == w((i+2)%3)) {// two eigenvalues are the same
434 // find maximum element of the independant eigenvector
435 maxVal = fabs(v(i, 0));
436 maxI = 0;
437 for (j = 1; j < 3; j++) {
438 if (maxVal < (tmp = fabs(v(i, j)))){
439 maxVal = tmp;
440 maxI = j;
441 }
442 }
443
444 // swap the eigenvector into its proper position
445 if (maxI != i) {
446 tmp = w(maxI);
447 w(maxI) = w(i);
448 w(i) = tmp;
449
450 v.swapRow(i, maxI);
451 }
452 // maximum element of eigenvector should be positive
453 if (v(maxI, maxI) < 0) {
454 v(maxI, 0) = -v(maxI, 0);
455 v(maxI, 1) = -v(maxI, 1);
456 v(maxI, 2) = -v(maxI, 2);
457 }
458
459 // re-orthogonalize the other two eigenvectors
460 j = (maxI+1)%3;
461 k = (maxI+2)%3;
462
463 v(j, 0) = 0.0;
464 v(j, 1) = 0.0;
465 v(j, 2) = 0.0;
466 v(j, j) = 1.0;
467
468 /** @todo */
469 v_maxI = v.getRow(maxI);
470 v_j = v.getRow(j);
471 v_k = cross(v_maxI, v_j);
472 v_k.normalize();
473 v_j = cross(v_k, v_maxI);
474 v.setRow(j, v_j);
475 v.setRow(k, v_k);
476
477
478 // transpose vectors back to columns
479 v = v.transpose();
480 return;
481 }
482 }
483
484 // the three eigenvalues are different, just sort the eigenvectors
485 // to align them with the x, y, and z axes
486
487 // find the vector with the largest x element, make that vector
488 // the first vector
489 maxVal = fabs(v(0, 0));
490 maxI = 0;
491 for (i = 1; i < 3; i++) {
492 if (maxVal < (tmp = fabs(v(i, 0)))) {
493 maxVal = tmp;
494 maxI = i;
495 }
496 }
497
498 // swap eigenvalue and eigenvector
499 if (maxI != 0) {
500 tmp = w(maxI);
501 w(maxI) = w(0);
502 w(0) = tmp;
503 v.swapRow(maxI, 0);
504 }
505 // do the same for the y element
506 if (fabs(v(1, 1)) < fabs(v(2, 1))) {
507 tmp = w(2);
508 w(2) = w(1);
509 w(1) = tmp;
510 v.swapRow(2, 1);
511 }
512
513 // ensure that the sign of the eigenvectors is correct
514 for (i = 0; i < 2; i++) {
515 if (v(i, i) < 0) {
516 v(i, 0) = -v(i, 0);
517 v(i, 1) = -v(i, 1);
518 v(i, 2) = -v(i, 2);
519 }
520 }
521
522 // set sign of final eigenvector to ensure that determinant is positive
523 if (v.determinant() < 0) {
524 v(2, 0) = -v(2, 0);
525 v(2, 1) = -v(2, 1);
526 v(2, 2) = -v(2, 2);
527 }
528
529 // transpose the eigenvectors back again
530 v = v.transpose();
531 return ;
532 }
533
534 /**
535 * Return the multiplication of two matrixes (m1 * m2).
536 * @return the multiplication of two matrixes
537 * @param m1 the first matrix
538 * @param m2 the second matrix
539 */
540 template<typename Real>
541 inline SquareMatrix3<Real> operator *(const SquareMatrix3<Real>& m1, const SquareMatrix3<Real>& m2) {
542 SquareMatrix3<Real> result;
543
544 for (unsigned int i = 0; i < 3; i++)
545 for (unsigned int j = 0; j < 3; j++)
546 for (unsigned int k = 0; k < 3; k++)
547 result(i, j) += m1(i, k) * m2(k, j);
548
549 return result;
550 }
551
552 template<typename Real>
553 inline SquareMatrix3<Real> outProduct(const Vector3<Real>& v1, const Vector3<Real>& v2) {
554 SquareMatrix3<Real> result;
555
556 for (unsigned int i = 0; i < 3; i++) {
557 for (unsigned int j = 0; j < 3; j++) {
558 result(i, j) = v1[i] * v2[j];
559 }
560 }
561
562 return result;
563 }
564
565
566 typedef SquareMatrix3<RealType> Mat3x3d;
567 typedef SquareMatrix3<RealType> RotMat3x3d;
568
569 } //namespace OpenMD
570 #endif // MATH_SQUAREMATRIX_HPP
571

Properties

Name Value
svn:keywords Author Id Revision Date