1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Acknowledgement of the program authors must be made in any |
10 |
* publication of scientific results based in part on use of the |
11 |
* program. An acceptable form of acknowledgement is citation of |
12 |
* the article in which the program was described (Matthew |
13 |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
* |
18 |
* 2. Redistributions of source code must retain the above copyright |
19 |
* notice, this list of conditions and the following disclaimer. |
20 |
* |
21 |
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
* notice, this list of conditions and the following disclaimer in the |
23 |
* documentation and/or other materials provided with the |
24 |
* distribution. |
25 |
* |
26 |
* This software is provided "AS IS," without a warranty of any |
27 |
* kind. All express or implied conditions, representations and |
28 |
* warranties, including any implied warranty of merchantability, |
29 |
* fitness for a particular purpose or non-infringement, are hereby |
30 |
* excluded. The University of Notre Dame and its licensors shall not |
31 |
* be liable for any damages suffered by licensee as a result of |
32 |
* using, modifying or distributing the software or its |
33 |
* derivatives. In no event will the University of Notre Dame or its |
34 |
* licensors be liable for any lost revenue, profit or data, or for |
35 |
* direct, indirect, special, consequential, incidental or punitive |
36 |
* damages, however caused and regardless of the theory of liability, |
37 |
* arising out of the use of or inability to use software, even if the |
38 |
* University of Notre Dame has been advised of the possibility of |
39 |
* such damages. |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file SquareMatrix3.hpp |
44 |
* @author Teng Lin |
45 |
* @date 10/11/2004 |
46 |
* @version 1.0 |
47 |
*/ |
48 |
#ifndef MATH_SQUAREMATRIX3_HPP |
49 |
#define MATH_SQUAREMATRIX3_HPP |
50 |
#include <vector> |
51 |
#include "Quaternion.hpp" |
52 |
#include "SquareMatrix.hpp" |
53 |
#include "Vector3.hpp" |
54 |
#include "utils/NumericConstant.hpp" |
55 |
namespace oopse { |
56 |
|
57 |
template<typename Real> |
58 |
class SquareMatrix3 : public SquareMatrix<Real, 3> { |
59 |
public: |
60 |
|
61 |
typedef Real ElemType; |
62 |
typedef Real* ElemPoinerType; |
63 |
|
64 |
/** default constructor */ |
65 |
SquareMatrix3() : SquareMatrix<Real, 3>() { |
66 |
} |
67 |
|
68 |
/** Constructs and initializes every element of this matrix to a scalar */ |
69 |
SquareMatrix3(Real s) : SquareMatrix<Real,3>(s){ |
70 |
} |
71 |
|
72 |
/** Constructs and initializes from an array */ |
73 |
SquareMatrix3(Real* array) : SquareMatrix<Real,3>(array){ |
74 |
} |
75 |
|
76 |
|
77 |
/** copy constructor */ |
78 |
SquareMatrix3(const SquareMatrix<Real, 3>& m) : SquareMatrix<Real, 3>(m) { |
79 |
} |
80 |
|
81 |
SquareMatrix3( const Vector3<Real>& eulerAngles) { |
82 |
setupRotMat(eulerAngles); |
83 |
} |
84 |
|
85 |
SquareMatrix3(Real phi, Real theta, Real psi) { |
86 |
setupRotMat(phi, theta, psi); |
87 |
} |
88 |
|
89 |
SquareMatrix3(const Quaternion<Real>& q) { |
90 |
setupRotMat(q); |
91 |
|
92 |
} |
93 |
|
94 |
SquareMatrix3(Real w, Real x, Real y, Real z) { |
95 |
setupRotMat(w, x, y, z); |
96 |
} |
97 |
|
98 |
/** copy assignment operator */ |
99 |
SquareMatrix3<Real>& operator =(const SquareMatrix<Real, 3>& m) { |
100 |
if (this == &m) |
101 |
return *this; |
102 |
SquareMatrix<Real, 3>::operator=(m); |
103 |
return *this; |
104 |
} |
105 |
|
106 |
|
107 |
SquareMatrix3<Real>& operator =(const Quaternion<Real>& q) { |
108 |
this->setupRotMat(q); |
109 |
return *this; |
110 |
} |
111 |
|
112 |
/** |
113 |
* Sets this matrix to a rotation matrix by three euler angles |
114 |
* @ param euler |
115 |
*/ |
116 |
void setupRotMat(const Vector3<Real>& eulerAngles) { |
117 |
setupRotMat(eulerAngles[0], eulerAngles[1], eulerAngles[2]); |
118 |
} |
119 |
|
120 |
/** |
121 |
* Sets this matrix to a rotation matrix by three euler angles |
122 |
* @param phi |
123 |
* @param theta |
124 |
* @psi theta |
125 |
*/ |
126 |
void setupRotMat(Real phi, Real theta, Real psi) { |
127 |
Real sphi, stheta, spsi; |
128 |
Real cphi, ctheta, cpsi; |
129 |
|
130 |
sphi = sin(phi); |
131 |
stheta = sin(theta); |
132 |
spsi = sin(psi); |
133 |
cphi = cos(phi); |
134 |
ctheta = cos(theta); |
135 |
cpsi = cos(psi); |
136 |
|
137 |
this->data_[0][0] = cpsi * cphi - ctheta * sphi * spsi; |
138 |
this->data_[0][1] = cpsi * sphi + ctheta * cphi * spsi; |
139 |
this->data_[0][2] = spsi * stheta; |
140 |
|
141 |
this->data_[1][0] = -spsi * ctheta - ctheta * sphi * cpsi; |
142 |
this->data_[1][1] = -spsi * stheta + ctheta * cphi * cpsi; |
143 |
this->data_[1][2] = cpsi * stheta; |
144 |
|
145 |
this->data_[2][0] = stheta * sphi; |
146 |
this->data_[2][1] = -stheta * cphi; |
147 |
this->data_[2][2] = ctheta; |
148 |
} |
149 |
|
150 |
|
151 |
/** |
152 |
* Sets this matrix to a rotation matrix by quaternion |
153 |
* @param quat |
154 |
*/ |
155 |
void setupRotMat(const Quaternion<Real>& quat) { |
156 |
setupRotMat(quat.w(), quat.x(), quat.y(), quat.z()); |
157 |
} |
158 |
|
159 |
/** |
160 |
* Sets this matrix to a rotation matrix by quaternion |
161 |
* @param w the first element |
162 |
* @param x the second element |
163 |
* @param y the third element |
164 |
* @param z the fourth element |
165 |
*/ |
166 |
void setupRotMat(Real w, Real x, Real y, Real z) { |
167 |
Quaternion<Real> q(w, x, y, z); |
168 |
*this = q.toRotationMatrix3(); |
169 |
} |
170 |
|
171 |
void setupSkewMat(Vector3<Real> v) { |
172 |
setupSkewMat(v[0], v[1], v[2]); |
173 |
} |
174 |
|
175 |
void setupSkewMat(Real v1, Real v2, Real v3) { |
176 |
this->data_[0][0] = 0; |
177 |
this->data_[0][1] = -v3; |
178 |
this->data_[0][2] = v2; |
179 |
this->data_[1][0] = v3; |
180 |
this->data_[1][1] = 0; |
181 |
this->data_[1][2] = -v1; |
182 |
this->data_[2][0] = -v2; |
183 |
this->data_[2][1] = v1; |
184 |
this->data_[2][2] = 0; |
185 |
|
186 |
|
187 |
} |
188 |
|
189 |
|
190 |
|
191 |
/** |
192 |
* Returns the quaternion from this rotation matrix |
193 |
* @return the quaternion from this rotation matrix |
194 |
* @exception invalid rotation matrix |
195 |
*/ |
196 |
Quaternion<Real> toQuaternion() { |
197 |
Quaternion<Real> q; |
198 |
Real t, s; |
199 |
Real ad1, ad2, ad3; |
200 |
t = this->data_[0][0] + this->data_[1][1] + this->data_[2][2] + 1.0; |
201 |
|
202 |
if( t > NumericConstant::epsilon ){ |
203 |
|
204 |
s = 0.5 / sqrt( t ); |
205 |
q[0] = 0.25 / s; |
206 |
q[1] = (this->data_[1][2] - this->data_[2][1]) * s; |
207 |
q[2] = (this->data_[2][0] - this->data_[0][2]) * s; |
208 |
q[3] = (this->data_[0][1] - this->data_[1][0]) * s; |
209 |
} else { |
210 |
|
211 |
ad1 = this->data_[0][0]; |
212 |
ad2 = this->data_[1][1]; |
213 |
ad3 = this->data_[2][2]; |
214 |
|
215 |
if( ad1 >= ad2 && ad1 >= ad3 ){ |
216 |
|
217 |
s = 0.5 / sqrt( 1.0 + this->data_[0][0] - this->data_[1][1] - this->data_[2][2] ); |
218 |
q[0] = (this->data_[1][2] - this->data_[2][1]) * s; |
219 |
q[1] = 0.25 / s; |
220 |
q[2] = (this->data_[0][1] + this->data_[1][0]) * s; |
221 |
q[3] = (this->data_[0][2] + this->data_[2][0]) * s; |
222 |
} else if ( ad2 >= ad1 && ad2 >= ad3 ) { |
223 |
s = 0.5 / sqrt( 1.0 + this->data_[1][1] - this->data_[0][0] - this->data_[2][2] ); |
224 |
q[0] = (this->data_[2][0] - this->data_[0][2] ) * s; |
225 |
q[1] = (this->data_[0][1] + this->data_[1][0]) * s; |
226 |
q[2] = 0.25 / s; |
227 |
q[3] = (this->data_[1][2] + this->data_[2][1]) * s; |
228 |
} else { |
229 |
|
230 |
s = 0.5 / sqrt( 1.0 + this->data_[2][2] - this->data_[0][0] - this->data_[1][1] ); |
231 |
q[0] = (this->data_[0][1] - this->data_[1][0]) * s; |
232 |
q[1] = (this->data_[0][2] + this->data_[2][0]) * s; |
233 |
q[2] = (this->data_[1][2] + this->data_[2][1]) * s; |
234 |
q[3] = 0.25 / s; |
235 |
} |
236 |
} |
237 |
|
238 |
return q; |
239 |
|
240 |
} |
241 |
|
242 |
/** |
243 |
* Returns the euler angles from this rotation matrix |
244 |
* @return the euler angles in a vector |
245 |
* @exception invalid rotation matrix |
246 |
* We use so-called "x-convention", which is the most common definition. |
247 |
* In this convention, the rotation given by Euler angles (phi, theta, |
248 |
* psi), where the first rotation is by an angle phi about the z-axis, |
249 |
* the second is by an angle theta (0 <= theta <= 180) about the x-axis, |
250 |
* and the third is by an angle psi about the z-axis (again). |
251 |
*/ |
252 |
Vector3<Real> toEulerAngles() { |
253 |
Vector3<Real> myEuler; |
254 |
Real phi; |
255 |
Real theta; |
256 |
Real psi; |
257 |
Real ctheta; |
258 |
Real stheta; |
259 |
|
260 |
// set the tolerance for Euler angles and rotation elements |
261 |
|
262 |
theta = acos(std::min((RealType)1.0, std::max((RealType)-1.0,this->data_[2][2]))); |
263 |
ctheta = this->data_[2][2]; |
264 |
stheta = sqrt(1.0 - ctheta * ctheta); |
265 |
|
266 |
// when sin(theta) is close to 0, we need to consider |
267 |
// singularity In this case, we can assign an arbitary value to |
268 |
// phi (or psi), and then determine the psi (or phi) or |
269 |
// vice-versa. We'll assume that phi always gets the rotation, |
270 |
// and psi is 0 in cases of singularity. |
271 |
// we use atan2 instead of atan, since atan2 will give us -Pi to Pi. |
272 |
// Since 0 <= theta <= 180, sin(theta) will be always |
273 |
// non-negative. Therefore, it will never change the sign of both of |
274 |
// the parameters passed to atan2. |
275 |
|
276 |
if (fabs(stheta) < 1e-6){ |
277 |
psi = 0.0; |
278 |
phi = atan2(-this->data_[1][0], this->data_[0][0]); |
279 |
} |
280 |
// we only have one unique solution |
281 |
else{ |
282 |
phi = atan2(this->data_[2][0], -this->data_[2][1]); |
283 |
psi = atan2(this->data_[0][2], this->data_[1][2]); |
284 |
} |
285 |
|
286 |
//wrap phi and psi, make sure they are in the range from 0 to 2*Pi |
287 |
if (phi < 0) |
288 |
phi += 2.0 * M_PI; |
289 |
|
290 |
if (psi < 0) |
291 |
psi += 2.0 * M_PI; |
292 |
|
293 |
myEuler[0] = phi; |
294 |
myEuler[1] = theta; |
295 |
myEuler[2] = psi; |
296 |
|
297 |
return myEuler; |
298 |
} |
299 |
|
300 |
/** Returns the determinant of this matrix. */ |
301 |
Real determinant() const { |
302 |
Real x,y,z; |
303 |
|
304 |
x = this->data_[0][0] * (this->data_[1][1] * this->data_[2][2] - this->data_[1][2] * this->data_[2][1]); |
305 |
y = this->data_[0][1] * (this->data_[1][2] * this->data_[2][0] - this->data_[1][0] * this->data_[2][2]); |
306 |
z = this->data_[0][2] * (this->data_[1][0] * this->data_[2][1] - this->data_[1][1] * this->data_[2][0]); |
307 |
|
308 |
return(x + y + z); |
309 |
} |
310 |
|
311 |
/** Returns the trace of this matrix. */ |
312 |
Real trace() const { |
313 |
return this->data_[0][0] + this->data_[1][1] + this->data_[2][2]; |
314 |
} |
315 |
|
316 |
/** |
317 |
* Sets the value of this matrix to the inversion of itself. |
318 |
* @note since simple algorithm can be applied to inverse the 3 by 3 matrix, we hide the |
319 |
* implementation of inverse in SquareMatrix class |
320 |
*/ |
321 |
SquareMatrix3<Real> inverse() const { |
322 |
SquareMatrix3<Real> m; |
323 |
RealType det = determinant(); |
324 |
if (fabs(det) <= oopse::epsilon) { |
325 |
//"The method was called on a matrix with |determinant| <= 1e-6.", |
326 |
//"This is a runtime or a programming error in your application."); |
327 |
std::vector<int> zeroDiagElementIndex; |
328 |
for (int i =0; i < 3; ++i) { |
329 |
if (fabs(this->data_[i][i]) <= oopse::epsilon) { |
330 |
zeroDiagElementIndex.push_back(i); |
331 |
} |
332 |
} |
333 |
|
334 |
if (zeroDiagElementIndex.size() == 2) { |
335 |
int index = zeroDiagElementIndex[0]; |
336 |
m(index, index) = 1.0 / this->data_[index][index]; |
337 |
}else if (zeroDiagElementIndex.size() == 1) { |
338 |
|
339 |
int a = (zeroDiagElementIndex[0] + 1) % 3; |
340 |
int b = (zeroDiagElementIndex[0] + 2) %3; |
341 |
RealType denom = this->data_[a][a] * this->data_[b][b] - this->data_[b][a]*this->data_[a][b]; |
342 |
m(a, a) = this->data_[b][b] /denom; |
343 |
m(b, a) = -this->data_[b][a]/denom; |
344 |
|
345 |
m(a,b) = -this->data_[a][b]/denom; |
346 |
m(b, b) = this->data_[a][a]/denom; |
347 |
|
348 |
} |
349 |
|
350 |
/* |
351 |
for(std::vector<int>::iterator iter = zeroDiagElementIndex.begin(); iter != zeroDiagElementIndex.end() ++iter) { |
352 |
if (this->data_[*iter][0] > oopse::epsilon || this->data_[*iter][1] ||this->data_[*iter][2] || |
353 |
this->data_[0][*iter] > oopse::epsilon || this->data_[1][*iter] ||this->data_[2][*iter] ) { |
354 |
std::cout << "can not inverse matrix" << std::endl; |
355 |
} |
356 |
} |
357 |
*/ |
358 |
} else { |
359 |
|
360 |
m(0, 0) = this->data_[1][1]*this->data_[2][2] - this->data_[1][2]*this->data_[2][1]; |
361 |
m(1, 0) = this->data_[1][2]*this->data_[2][0] - this->data_[1][0]*this->data_[2][2]; |
362 |
m(2, 0) = this->data_[1][0]*this->data_[2][1] - this->data_[1][1]*this->data_[2][0]; |
363 |
m(0, 1) = this->data_[2][1]*this->data_[0][2] - this->data_[2][2]*this->data_[0][1]; |
364 |
m(1, 1) = this->data_[2][2]*this->data_[0][0] - this->data_[2][0]*this->data_[0][2]; |
365 |
m(2, 1) = this->data_[2][0]*this->data_[0][1] - this->data_[2][1]*this->data_[0][0]; |
366 |
m(0, 2) = this->data_[0][1]*this->data_[1][2] - this->data_[0][2]*this->data_[1][1]; |
367 |
m(1, 2) = this->data_[0][2]*this->data_[1][0] - this->data_[0][0]*this->data_[1][2]; |
368 |
m(2, 2) = this->data_[0][0]*this->data_[1][1] - this->data_[0][1]*this->data_[1][0]; |
369 |
|
370 |
m /= det; |
371 |
} |
372 |
return m; |
373 |
} |
374 |
|
375 |
SquareMatrix3<Real> transpose() const{ |
376 |
SquareMatrix3<Real> result; |
377 |
|
378 |
for (unsigned int i = 0; i < 3; i++) |
379 |
for (unsigned int j = 0; j < 3; j++) |
380 |
result(j, i) = this->data_[i][j]; |
381 |
|
382 |
return result; |
383 |
} |
384 |
/** |
385 |
* Extract the eigenvalues and eigenvectors from a 3x3 matrix. |
386 |
* The eigenvectors (the columns of V) will be normalized. |
387 |
* The eigenvectors are aligned optimally with the x, y, and z |
388 |
* axes respectively. |
389 |
* @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is |
390 |
* overwritten |
391 |
* @param w will contain the eigenvalues of the matrix On return of this function |
392 |
* @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are |
393 |
* normalized and mutually orthogonal. |
394 |
* @warning a will be overwritten |
395 |
*/ |
396 |
static void diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w, SquareMatrix3<Real>& v); |
397 |
}; |
398 |
/*========================================================================= |
399 |
|
400 |
Program: Visualization Toolkit |
401 |
Module: $RCSfile: SquareMatrix3.hpp,v $ |
402 |
|
403 |
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen |
404 |
All rights reserved. |
405 |
See Copyright.txt or http://www.kitware.com/Copyright.htm for details. |
406 |
|
407 |
This software is distributed WITHOUT ANY WARRANTY; without even |
408 |
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR |
409 |
PURPOSE. See the above copyright notice for more information. |
410 |
|
411 |
=========================================================================*/ |
412 |
template<typename Real> |
413 |
void SquareMatrix3<Real>::diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w, |
414 |
SquareMatrix3<Real>& v) { |
415 |
int i,j,k,maxI; |
416 |
Real tmp, maxVal; |
417 |
Vector3<Real> v_maxI, v_k, v_j; |
418 |
|
419 |
// diagonalize using Jacobi |
420 |
jacobi(a, w, v); |
421 |
// if all the eigenvalues are the same, return identity matrix |
422 |
if (w[0] == w[1] && w[0] == w[2] ) { |
423 |
v = SquareMatrix3<Real>::identity(); |
424 |
return; |
425 |
} |
426 |
|
427 |
// transpose temporarily, it makes it easier to sort the eigenvectors |
428 |
v = v.transpose(); |
429 |
|
430 |
// if two eigenvalues are the same, re-orthogonalize to optimally line |
431 |
// up the eigenvectors with the x, y, and z axes |
432 |
for (i = 0; i < 3; i++) { |
433 |
if (w((i+1)%3) == w((i+2)%3)) {// two eigenvalues are the same |
434 |
// find maximum element of the independant eigenvector |
435 |
maxVal = fabs(v(i, 0)); |
436 |
maxI = 0; |
437 |
for (j = 1; j < 3; j++) { |
438 |
if (maxVal < (tmp = fabs(v(i, j)))){ |
439 |
maxVal = tmp; |
440 |
maxI = j; |
441 |
} |
442 |
} |
443 |
|
444 |
// swap the eigenvector into its proper position |
445 |
if (maxI != i) { |
446 |
tmp = w(maxI); |
447 |
w(maxI) = w(i); |
448 |
w(i) = tmp; |
449 |
|
450 |
v.swapRow(i, maxI); |
451 |
} |
452 |
// maximum element of eigenvector should be positive |
453 |
if (v(maxI, maxI) < 0) { |
454 |
v(maxI, 0) = -v(maxI, 0); |
455 |
v(maxI, 1) = -v(maxI, 1); |
456 |
v(maxI, 2) = -v(maxI, 2); |
457 |
} |
458 |
|
459 |
// re-orthogonalize the other two eigenvectors |
460 |
j = (maxI+1)%3; |
461 |
k = (maxI+2)%3; |
462 |
|
463 |
v(j, 0) = 0.0; |
464 |
v(j, 1) = 0.0; |
465 |
v(j, 2) = 0.0; |
466 |
v(j, j) = 1.0; |
467 |
|
468 |
/** @todo */ |
469 |
v_maxI = v.getRow(maxI); |
470 |
v_j = v.getRow(j); |
471 |
v_k = cross(v_maxI, v_j); |
472 |
v_k.normalize(); |
473 |
v_j = cross(v_k, v_maxI); |
474 |
v.setRow(j, v_j); |
475 |
v.setRow(k, v_k); |
476 |
|
477 |
|
478 |
// transpose vectors back to columns |
479 |
v = v.transpose(); |
480 |
return; |
481 |
} |
482 |
} |
483 |
|
484 |
// the three eigenvalues are different, just sort the eigenvectors |
485 |
// to align them with the x, y, and z axes |
486 |
|
487 |
// find the vector with the largest x element, make that vector |
488 |
// the first vector |
489 |
maxVal = fabs(v(0, 0)); |
490 |
maxI = 0; |
491 |
for (i = 1; i < 3; i++) { |
492 |
if (maxVal < (tmp = fabs(v(i, 0)))) { |
493 |
maxVal = tmp; |
494 |
maxI = i; |
495 |
} |
496 |
} |
497 |
|
498 |
// swap eigenvalue and eigenvector |
499 |
if (maxI != 0) { |
500 |
tmp = w(maxI); |
501 |
w(maxI) = w(0); |
502 |
w(0) = tmp; |
503 |
v.swapRow(maxI, 0); |
504 |
} |
505 |
// do the same for the y element |
506 |
if (fabs(v(1, 1)) < fabs(v(2, 1))) { |
507 |
tmp = w(2); |
508 |
w(2) = w(1); |
509 |
w(1) = tmp; |
510 |
v.swapRow(2, 1); |
511 |
} |
512 |
|
513 |
// ensure that the sign of the eigenvectors is correct |
514 |
for (i = 0; i < 2; i++) { |
515 |
if (v(i, i) < 0) { |
516 |
v(i, 0) = -v(i, 0); |
517 |
v(i, 1) = -v(i, 1); |
518 |
v(i, 2) = -v(i, 2); |
519 |
} |
520 |
} |
521 |
|
522 |
// set sign of final eigenvector to ensure that determinant is positive |
523 |
if (v.determinant() < 0) { |
524 |
v(2, 0) = -v(2, 0); |
525 |
v(2, 1) = -v(2, 1); |
526 |
v(2, 2) = -v(2, 2); |
527 |
} |
528 |
|
529 |
// transpose the eigenvectors back again |
530 |
v = v.transpose(); |
531 |
return ; |
532 |
} |
533 |
|
534 |
/** |
535 |
* Return the multiplication of two matrixes (m1 * m2). |
536 |
* @return the multiplication of two matrixes |
537 |
* @param m1 the first matrix |
538 |
* @param m2 the second matrix |
539 |
*/ |
540 |
template<typename Real> |
541 |
inline SquareMatrix3<Real> operator *(const SquareMatrix3<Real>& m1, const SquareMatrix3<Real>& m2) { |
542 |
SquareMatrix3<Real> result; |
543 |
|
544 |
for (unsigned int i = 0; i < 3; i++) |
545 |
for (unsigned int j = 0; j < 3; j++) |
546 |
for (unsigned int k = 0; k < 3; k++) |
547 |
result(i, j) += m1(i, k) * m2(k, j); |
548 |
|
549 |
return result; |
550 |
} |
551 |
|
552 |
template<typename Real> |
553 |
inline SquareMatrix3<Real> outProduct(const Vector3<Real>& v1, const Vector3<Real>& v2) { |
554 |
SquareMatrix3<Real> result; |
555 |
|
556 |
for (unsigned int i = 0; i < 3; i++) { |
557 |
for (unsigned int j = 0; j < 3; j++) { |
558 |
result(i, j) = v1[i] * v2[j]; |
559 |
} |
560 |
} |
561 |
|
562 |
return result; |
563 |
} |
564 |
|
565 |
|
566 |
typedef SquareMatrix3<RealType> Mat3x3d; |
567 |
typedef SquareMatrix3<RealType> RotMat3x3d; |
568 |
|
569 |
} //namespace oopse |
570 |
#endif // MATH_SQUAREMATRIX_HPP |
571 |
|