35 |
|
* |
36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
< |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
|
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
57 |
|
/** |
58 |
|
* @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp" |
59 |
|
* @brief A square matrix class |
60 |
< |
* @template Real the element type |
61 |
< |
* @template Dim the dimension of the square matrix |
60 |
> |
* \tparam Real the element type |
61 |
> |
* \tparam Dim the dimension of the square matrix |
62 |
|
*/ |
63 |
|
template<typename Real, int Dim> |
64 |
|
class SquareMatrix : public RectMatrix<Real, Dim, Dim> { |
125 |
|
Real det; |
126 |
|
return det; |
127 |
|
} |
128 |
< |
|
128 |
> |
|
129 |
|
/** Returns the trace of this matrix. */ |
130 |
|
Real trace() const { |
131 |
|
Real tmp = 0; |
135 |
|
|
136 |
|
return tmp; |
137 |
|
} |
138 |
– |
|
139 |
– |
/** |
140 |
– |
* Returns the tensor contraction (double dot product) of two rank 2 |
141 |
– |
* tensors (or Matrices) |
142 |
– |
* @param t1 first tensor |
143 |
– |
* @param t2 second tensor |
144 |
– |
* @return the tensor contraction (double dot product) of t1 and t2 |
145 |
– |
*/ |
146 |
– |
Real doubleDot( const SquareMatrix<Real, Dim>& t1, const SquareMatrix<Real, Dim>& t2 ) { |
147 |
– |
Real tmp; |
148 |
– |
tmp = 0; |
149 |
– |
|
150 |
– |
for (unsigned int i = 0; i < Dim; i++) |
151 |
– |
for (unsigned int j =0; j < Dim; j++) |
152 |
– |
tmp += t1[i][j] * t2[i][j]; |
153 |
– |
|
154 |
– |
return tmp; |
155 |
– |
} |
138 |
|
|
157 |
– |
|
139 |
|
/** Tests if this matrix is symmetrix. */ |
140 |
|
bool isSymmetric() const { |
141 |
|
for (unsigned int i = 0; i < Dim - 1; i++) |
213 |
|
* @return true if success, otherwise return false |
214 |
|
* @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is |
215 |
|
* overwritten |
216 |
< |
* @param w will contain the eigenvalues of the matrix On return of this function |
216 |
> |
* @param d will contain the eigenvalues of the matrix On return of this function |
217 |
|
* @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are |
218 |
|
* normalized and mutually orthogonal. |
219 |
|
*/ |
352 |
|
//// this is NEVER called |
353 |
|
if ( i >= VTK_MAX_ROTATIONS ) { |
354 |
|
std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl; |
355 |
+ |
if (n > 4) { |
356 |
+ |
delete[] b; |
357 |
+ |
delete[] z; |
358 |
+ |
} |
359 |
|
return 0; |
360 |
|
} |
361 |
|
|