ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/math/SquareMatrix.hpp
(Generate patch)

Comparing trunk/src/math/SquareMatrix.hpp (file contents):
Revision 123 by tim, Wed Oct 20 18:07:08 2004 UTC vs.
Revision 1924 by gezelter, Mon Aug 5 21:46:11 2013 UTC

# Line 1 | Line 1
1   /*
2 < * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project
3 < *
4 < * Contact: oopse@oopse.org
5 < *
6 < * This program is free software; you can redistribute it and/or
7 < * modify it under the terms of the GNU Lesser General Public License
8 < * as published by the Free Software Foundation; either version 2.1
9 < * of the License, or (at your option) any later version.
10 < * All we ask is that proper credit is given for our work, which includes
11 < * - but is not limited to - adding the above copyright notice to the beginning
12 < * of your source code files, and to any copyright notice that you may distribute
13 < * with programs based on this work.
14 < *
15 < * This program is distributed in the hope that it will be useful,
16 < * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 < * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 < * GNU Lesser General Public License for more details.
19 < *
20 < * You should have received a copy of the GNU Lesser General Public License
21 < * along with this program; if not, write to the Free Software
22 < * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4 + * The University of Notre Dame grants you ("Licensee") a
5 + * non-exclusive, royalty free, license to use, modify and
6 + * redistribute this software in source and binary code form, provided
7 + * that the following conditions are met:
8 + *
9 + * 1. Redistributions of source code must retain the above copyright
10 + *    notice, this list of conditions and the following disclaimer.
11 + *
12 + * 2. Redistributions in binary form must reproduce the above copyright
13 + *    notice, this list of conditions and the following disclaimer in the
14 + *    documentation and/or other materials provided with the
15 + *    distribution.
16 + *
17 + * This software is provided "AS IS," without a warranty of any
18 + * kind. All express or implied conditions, representations and
19 + * warranties, including any implied warranty of merchantability,
20 + * fitness for a particular purpose or non-infringement, are hereby
21 + * excluded.  The University of Notre Dame and its licensors shall not
22 + * be liable for any damages suffered by licensee as a result of
23 + * using, modifying or distributing the software or its
24 + * derivatives. In no event will the University of Notre Dame or its
25 + * licensors be liable for any lost revenue, profit or data, or for
26 + * direct, indirect, special, consequential, incidental or punitive
27 + * damages, however caused and regardless of the theory of liability,
28 + * arising out of the use of or inability to use software, even if the
29 + * University of Notre Dame has been advised of the possibility of
30 + * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42 <
42 >
43   /**
44   * @file SquareMatrix.hpp
45   * @author Teng Lin
46   * @date 10/11/2004
47   * @version 1.0
48   */
49 < #ifndef MATH_SQUAREMATRIX_HPP
49 > #ifndef MATH_SQUAREMATRIX_HPP
50   #define MATH_SQUAREMATRIX_HPP
51  
52   #include "math/RectMatrix.hpp"
53 + #include "utils/NumericConstant.hpp"
54  
55 < namespace oopse {
55 > namespace OpenMD {
56  
57 <    /**
58 <     * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
59 <     * @brief A square matrix class
60 <     * @template Real the element type
61 <     * @template Dim the dimension of the square matrix
62 <     */
63 <    template<typename Real, int Dim>
64 <    class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
65 <        public:
57 >  /**
58 >   * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
59 >   * @brief A square matrix class
60 >   * \tparam Real the element type
61 >   * \tparam Dim the dimension of the square matrix
62 >   */
63 >  template<typename Real, int Dim>
64 >  class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
65 >  public:
66 >    typedef Real ElemType;
67 >    typedef Real* ElemPoinerType;
68  
69 <        /** default constructor */
70 <        SquareMatrix() {
71 <            for (unsigned int i = 0; i < Dim; i++)
72 <                for (unsigned int j = 0; j < Dim; j++)
73 <                    data_[i][j] = 0.0;
74 <         }
69 >    /** default constructor */
70 >    SquareMatrix() {
71 >      for (unsigned int i = 0; i < Dim; i++)
72 >        for (unsigned int j = 0; j < Dim; j++)
73 >          this->data_[i][j] = 0.0;
74 >    }
75  
76 <        /** copy constructor */
77 <        SquareMatrix(const RectMatrix<Real, Dim, Dim>& m)  : RectMatrix<Real, Dim, Dim>(m) {
78 <        }
59 <        
60 <        /** copy assignment operator */
61 <        SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
62 <            RectMatrix<Real, Dim, Dim>::operator=(m);
63 <            return *this;
64 <        }
65 <                              
66 <        /** Retunrs  an identity matrix*/
76 >    /** Constructs and initializes every element of this matrix to a scalar */
77 >    SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){
78 >    }
79  
80 <       static SquareMatrix<Real, Dim> identity() {
81 <            SquareMatrix<Real, Dim> m;
80 >    /** Constructs and initializes from an array */
81 >    SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){
82 >    }
83 >
84 >
85 >    /** copy constructor */
86 >    SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
87 >    }
88              
89 <            for (unsigned int i = 0; i < Dim; i++)
90 <                for (unsigned int j = 0; j < Dim; j++)
91 <                    if (i == j)
92 <                        m(i, j) = 1.0;
93 <                    else
94 <                        m(i, j) = 0.0;
89 >    /** copy assignment operator */
90 >    SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
91 >      RectMatrix<Real, Dim, Dim>::operator=(m);
92 >      return *this;
93 >    }
94 >                                  
95 >    /** Retunrs  an identity matrix*/
96  
97 <            return m;
98 <        }
97 >    static SquareMatrix<Real, Dim> identity() {
98 >      SquareMatrix<Real, Dim> m;
99 >                
100 >      for (unsigned int i = 0; i < Dim; i++)
101 >        for (unsigned int j = 0; j < Dim; j++)
102 >          if (i == j)
103 >            m(i, j) = 1.0;
104 >          else
105 >            m(i, j) = 0.0;
106  
107 <        /**
108 <         * Retunrs  the inversion of this matrix.
83 <         * @todo need implementation
84 <         */
85 <         SquareMatrix<Real, Dim>  inverse() {
86 <             SquareMatrix<Real, Dim> result;
107 >      return m;
108 >    }
109  
110 <             return result;
111 <        }        
110 >    /**
111 >     * Retunrs  the inversion of this matrix.
112 >     * @todo need implementation
113 >     */
114 >    SquareMatrix<Real, Dim>  inverse() {
115 >      SquareMatrix<Real, Dim> result;
116  
117 <        /**
118 <         * Returns the determinant of this matrix.
93 <         * @todo need implementation
94 <         */
95 <        Real determinant() const {
96 <            Real det;
97 <            return det;
98 <        }
117 >      return result;
118 >    }        
119  
120 <        /** Returns the trace of this matrix. */
121 <        Real trace() const {
122 <           Real tmp = 0;
123 <          
124 <            for (unsigned int i = 0; i < Dim ; i++)
125 <                tmp += data_[i][i];
120 >    /**
121 >     * Returns the determinant of this matrix.
122 >     * @todo need implementation
123 >     */
124 >    Real determinant() const {
125 >      Real det;
126 >      return det;
127 >    }
128 >    
129 >    /** Returns the trace of this matrix. */
130 >    Real trace() const {
131 >      Real tmp = 0;
132 >              
133 >      for (unsigned int i = 0; i < Dim ; i++)
134 >        tmp += this->data_[i][i];
135  
136 <            return tmp;
137 <        }
136 >      return tmp;
137 >    }
138  
139 <        /** Tests if this matrix is symmetrix. */            
140 <        bool isSymmetric() const {
141 <            for (unsigned int i = 0; i < Dim - 1; i++)
142 <                for (unsigned int j = i; j < Dim; j++)
143 <                    if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon)
144 <                        return false;
145 <                    
146 <            return true;
147 <        }
139 >    /** Tests if this matrix is symmetrix. */            
140 >    bool isSymmetric() const {
141 >      for (unsigned int i = 0; i < Dim - 1; i++)
142 >        for (unsigned int j = i; j < Dim; j++)
143 >          if (fabs(this->data_[i][j] - this->data_[j][i]) > epsilon)
144 >            return false;
145 >                        
146 >      return true;
147 >    }
148  
149 <        /** Tests if this matrix is orthogonal. */            
150 <        bool isOrthogonal() {
151 <            SquareMatrix<Real, Dim> tmp;
149 >    /** Tests if this matrix is orthogonal. */            
150 >    bool isOrthogonal() {
151 >      SquareMatrix<Real, Dim> tmp;
152  
153 <            tmp = *this * transpose();
153 >      tmp = *this * transpose();
154  
155 <            return tmp.isDiagonal();
156 <        }
155 >      return tmp.isDiagonal();
156 >    }
157  
158 <        /** Tests if this matrix is diagonal. */
159 <        bool isDiagonal() const {
160 <            for (unsigned int i = 0; i < Dim ; i++)
161 <                for (unsigned int j = 0; j < Dim; j++)
162 <                    if (i !=j && fabs(data_[i][j]) > oopse::epsilon)
163 <                        return false;
158 >    /** Tests if this matrix is diagonal. */
159 >    bool isDiagonal() const {
160 >      for (unsigned int i = 0; i < Dim ; i++)
161 >        for (unsigned int j = 0; j < Dim; j++)
162 >          if (i !=j && fabs(this->data_[i][j]) > epsilon)
163 >            return false;
164 >                        
165 >      return true;
166 >    }
167 >
168 >    /**
169 >     * Returns a column vector that contains the elements from the
170 >     * diagonal of m in the order R(0) = m(0,0), R(1) = m(1,1), and so
171 >     * on.
172 >     */
173 >    Vector<Real, Dim> diagonals() const {
174 >      Vector<Real, Dim> result;
175 >      for (unsigned int i = 0; i < Dim; i++) {
176 >        result(i) = this->data_[i][i];
177 >      }
178 >      return result;
179 >    }
180 >
181 >    /** Tests if this matrix is the unit matrix. */
182 >    bool isUnitMatrix() const {
183 >      if (!isDiagonal())
184 >        return false;
185 >                
186 >      for (unsigned int i = 0; i < Dim ; i++)
187 >        if (fabs(this->data_[i][i] - 1) > epsilon)
188 >          return false;
189                      
190 <            return true;
191 <        }
190 >      return true;
191 >    }        
192  
193 <        /** Tests if this matrix is the unit matrix. */
194 <        bool isUnitMatrix() const {
195 <            if (!isDiagonal())
142 <                return false;
143 <            
144 <            for (unsigned int i = 0; i < Dim ; i++)
145 <                if (fabs(data_[i][i] - 1) > oopse::epsilon)
146 <                    return false;
193 >    /** Return the transpose of this matrix */
194 >    SquareMatrix<Real,  Dim> transpose() const{
195 >      SquareMatrix<Real,  Dim> result;
196                  
197 <            return true;
198 <        }        
197 >      for (unsigned int i = 0; i < Dim; i++)
198 >        for (unsigned int j = 0; j < Dim; j++)              
199 >          result(j, i) = this->data_[i][j];
200  
201 <        /** @todo need implementation */
202 <        void diagonalize() {
203 <            //jacobi(m, eigenValues, ortMat);
204 <        }
201 >      return result;
202 >    }
203 >            
204 >    /** @todo need implementation */
205 >    void diagonalize() {
206 >      //jacobi(m, eigenValues, ortMat);
207 >    }
208  
209 <        /**
210 <         * Jacobi iteration routines for computing eigenvalues/eigenvectors of
211 <         * real symmetric matrix
212 <         *
213 <         * @return true if success, otherwise return false
214 <         * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
215 <         *     overwritten
216 <         * @param w will contain the eigenvalues of the matrix On return of this function
217 <         * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
218 <         *    normalized and mutually orthogonal.
219 <         */
220 <      
221 <        static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d,
222 <                              SquareMatrix<Real, Dim>& v);
223 <    };//end SquareMatrix
209 >    /**
210 >     * Jacobi iteration routines for computing eigenvalues/eigenvectors of
211 >     * real symmetric matrix
212 >     *
213 >     * @return true if success, otherwise return false
214 >     * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
215 >     *     overwritten
216 >     * @param d will contain the eigenvalues of the matrix On return of this function
217 >     * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
218 >     *    normalized and mutually orthogonal.
219 >     */
220 >          
221 >    static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d,
222 >                      SquareMatrix<Real, Dim>& v);
223 >  };//end SquareMatrix
224  
225  
226 < /*=========================================================================
226 >  /*=========================================================================
227  
228    Program:   Visualization Toolkit
229    Module:    $RCSfile: SquareMatrix.hpp,v $
# Line 179 | Line 232 | namespace oopse {
232    All rights reserved.
233    See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
234  
235 <     This software is distributed WITHOUT ANY WARRANTY; without even
236 <     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
237 <     PURPOSE.  See the above copyright notice for more information.
235 >  This software is distributed WITHOUT ANY WARRANTY; without even
236 >  the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
237 >  PURPOSE.  See the above copyright notice for more information.
238  
239 < =========================================================================*/
239 >  =========================================================================*/
240  
241 < #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau);\
242 <        a(k, l)=h+s*(g-h*tau)
241 > #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau); \
242 >    a(k, l)=h+s*(g-h*tau)
243  
244   #define VTK_MAX_ROTATIONS 20
245  
246 <    // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
247 <    // real symmetric matrix. Square nxn matrix a; size of matrix in n;
248 <    // output eigenvalues in w; and output eigenvectors in v. Resulting
249 <    // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
250 <    // normalized.
251 <    template<typename Real, int Dim>
252 <    int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
253 <                                  SquareMatrix<Real, Dim>& v) {
254 <      const int n = Dim;  
255 <      int i, j, k, iq, ip, numPos;
256 <      Real tresh, theta, tau, t, sm, s, h, g, c, tmp;
257 <      Real bspace[4], zspace[4];
258 <      Real *b = bspace;
259 <      Real *z = zspace;
246 >  // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
247 >  // real symmetric matrix. Square nxn matrix a; size of matrix in n;
248 >  // output eigenvalues in w; and output eigenvectors in v. Resulting
249 >  // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
250 >  // normalized.
251 >  template<typename Real, int Dim>
252 >  int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
253 >                                      SquareMatrix<Real, Dim>& v) {
254 >    const int n = Dim;  
255 >    int i, j, k, iq, ip, numPos;
256 >    Real tresh, theta, tau, t, sm, s, h, g, c, tmp;
257 >    Real bspace[4], zspace[4];
258 >    Real *b = bspace;
259 >    Real *z = zspace;
260  
261 <      // only allocate memory if the matrix is large
262 <      if (n > 4)
263 <        {
264 <        b = new Real[n];
265 <        z = new Real[n];
213 <        }
261 >    // only allocate memory if the matrix is large
262 >    if (n > 4) {
263 >      b = new Real[n];
264 >      z = new Real[n];
265 >    }
266  
267 <      // initialize
268 <      for (ip=0; ip<n; ip++)
269 <        {
270 <        for (iq=0; iq<n; iq++)
271 <          {
272 <          v(ip, iq) = 0.0;
273 <          }
274 <        v(ip, ip) = 1.0;
275 <        }
276 <      for (ip=0; ip<n; ip++)
277 <        {
226 <        b[ip] = w[ip] = a(ip, ip);
227 <        z[ip] = 0.0;
228 <        }
267 >    // initialize
268 >    for (ip=0; ip<n; ip++) {
269 >      for (iq=0; iq<n; iq++) {
270 >        v(ip, iq) = 0.0;
271 >      }
272 >      v(ip, ip) = 1.0;
273 >    }
274 >    for (ip=0; ip<n; ip++) {
275 >      b[ip] = w[ip] = a(ip, ip);
276 >      z[ip] = 0.0;
277 >    }
278  
279 <      // begin rotation sequence
280 <      for (i=0; i<VTK_MAX_ROTATIONS; i++)
281 <        {
282 <        sm = 0.0;
283 <        for (ip=0; ip<n-1; ip++)
284 <          {
285 <          for (iq=ip+1; iq<n; iq++)
286 <            {
287 <            sm += fabs(a(ip, iq));
288 <            }
289 <          }
241 <        if (sm == 0.0)
242 <          {
243 <          break;
244 <          }
279 >    // begin rotation sequence
280 >    for (i=0; i<VTK_MAX_ROTATIONS; i++) {
281 >      sm = 0.0;
282 >      for (ip=0; ip<n-1; ip++) {
283 >        for (iq=ip+1; iq<n; iq++) {
284 >          sm += fabs(a(ip, iq));
285 >        }
286 >      }
287 >      if (sm == 0.0) {
288 >        break;
289 >      }
290  
291 <        if (i < 3)                                // first 3 sweeps
292 <          {
293 <          tresh = 0.2*sm/(n*n);
294 <          }
295 <        else
251 <          {
252 <          tresh = 0.0;
253 <          }
291 >      if (i < 3) {                                // first 3 sweeps
292 >        tresh = 0.2*sm/(n*n);
293 >      } else {
294 >        tresh = 0.0;
295 >      }
296  
297 <        for (ip=0; ip<n-1; ip++)
298 <          {
299 <          for (iq=ip+1; iq<n; iq++)
258 <            {
259 <            g = 100.0*fabs(a(ip, iq));
297 >      for (ip=0; ip<n-1; ip++) {
298 >        for (iq=ip+1; iq<n; iq++) {
299 >          g = 100.0*fabs(a(ip, iq));
300  
301 <            // after 4 sweeps
302 <            if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
303 <            && (fabs(w[iq])+g) == fabs(w[iq]))
304 <              {
305 <              a(ip, iq) = 0.0;
306 <              }
307 <            else if (fabs(a(ip, iq)) > tresh)
308 <              {
309 <              h = w[iq] - w[ip];
310 <              if ( (fabs(h)+g) == fabs(h))
311 <                {
312 <                t = (a(ip, iq)) / h;
313 <                }
314 <              else
315 <                {
316 <                theta = 0.5*h / (a(ip, iq));
317 <                t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
318 <                if (theta < 0.0)
319 <                  {
320 <                  t = -t;
321 <                  }
322 <                }
323 <              c = 1.0 / sqrt(1+t*t);
324 <              s = t*c;
285 <              tau = s/(1.0+c);
286 <              h = t*a(ip, iq);
287 <              z[ip] -= h;
288 <              z[iq] += h;
289 <              w[ip] -= h;
290 <              w[iq] += h;
291 <              a(ip, iq)=0.0;
301 >          // after 4 sweeps
302 >          if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
303 >              && (fabs(w[iq])+g) == fabs(w[iq])) {
304 >            a(ip, iq) = 0.0;
305 >          } else if (fabs(a(ip, iq)) > tresh) {
306 >            h = w[iq] - w[ip];
307 >            if ( (fabs(h)+g) == fabs(h)) {
308 >              t = (a(ip, iq)) / h;
309 >            } else {
310 >              theta = 0.5*h / (a(ip, iq));
311 >              t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
312 >              if (theta < 0.0) {
313 >                t = -t;
314 >              }
315 >            }
316 >            c = 1.0 / sqrt(1+t*t);
317 >            s = t*c;
318 >            tau = s/(1.0+c);
319 >            h = t*a(ip, iq);
320 >            z[ip] -= h;
321 >            z[iq] += h;
322 >            w[ip] -= h;
323 >            w[iq] += h;
324 >            a(ip, iq)=0.0;
325  
326 <              // ip already shifted left by 1 unit
327 <              for (j = 0;j <= ip-1;j++)
328 <                {
329 <                VTK_ROTATE(a,j,ip,j,iq);
330 <                }
331 <              // ip and iq already shifted left by 1 unit
332 <              for (j = ip+1;j <= iq-1;j++)
333 <                {
334 <                VTK_ROTATE(a,ip,j,j,iq);
335 <                }
336 <              // iq already shifted left by 1 unit
337 <              for (j=iq+1; j<n; j++)
338 <                {
339 <                VTK_ROTATE(a,ip,j,iq,j);
340 <                }
341 <              for (j=0; j<n; j++)
342 <                {
343 <                VTK_ROTATE(v,j,ip,j,iq);
311 <                }
312 <              }
313 <            }
314 <          }
326 >            // ip already shifted left by 1 unit
327 >            for (j = 0;j <= ip-1;j++) {
328 >              VTK_ROTATE(a,j,ip,j,iq);
329 >            }
330 >            // ip and iq already shifted left by 1 unit
331 >            for (j = ip+1;j <= iq-1;j++) {
332 >              VTK_ROTATE(a,ip,j,j,iq);
333 >            }
334 >            // iq already shifted left by 1 unit
335 >            for (j=iq+1; j<n; j++) {
336 >              VTK_ROTATE(a,ip,j,iq,j);
337 >            }
338 >            for (j=0; j<n; j++) {
339 >              VTK_ROTATE(v,j,ip,j,iq);
340 >            }
341 >          }
342 >        }
343 >      }
344  
345 <        for (ip=0; ip<n; ip++)
346 <          {
347 <          b[ip] += z[ip];
348 <          w[ip] = b[ip];
349 <          z[ip] = 0.0;
350 <          }
322 <        }
345 >      for (ip=0; ip<n; ip++) {
346 >        b[ip] += z[ip];
347 >        w[ip] = b[ip];
348 >        z[ip] = 0.0;
349 >      }
350 >    }
351  
352 <      //// this is NEVER called
353 <      if ( i >= VTK_MAX_ROTATIONS )
354 <        {
355 <           std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl;
356 <           return 0;
357 <        }
352 >    //// this is NEVER called
353 >    if ( i >= VTK_MAX_ROTATIONS ) {
354 >      std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl;
355 >      if (n > 4) {
356 >        delete[] b;
357 >        delete[] z;
358 >      }      
359 >      return 0;
360 >    }
361  
362 <      // sort eigenfunctions                 these changes do not affect accuracy
363 <      for (j=0; j<n-1; j++)                  // boundary incorrect
364 <        {
365 <        k = j;
366 <        tmp = w[k];
367 <        for (i=j+1; i<n; i++)                // boundary incorrect, shifted already
368 <          {
369 <          if (w[i] >= tmp)                   // why exchage if same?
370 <            {
371 <            k = i;
372 <            tmp = w[k];
373 <            }
374 <          }
375 <        if (k != j)
376 <          {
377 <          w[k] = w[j];
378 <          w[j] = tmp;
379 <          for (i=0; i<n; i++)
380 <            {
381 <            tmp = v(i, j);
382 <            v(i, j) = v(i, k);
383 <            v(i, k) = tmp;
384 <            }
385 <          }
386 <        }
387 <      // insure eigenvector consistency (i.e., Jacobi can compute vectors that
388 <      // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
389 <      // reek havoc in hyperstreamline/other stuff. We will select the most
390 <      // positive eigenvector.
391 <      int ceil_half_n = (n >> 1) + (n & 1);
392 <      for (j=0; j<n; j++)
393 <        {
394 <        for (numPos=0, i=0; i<n; i++)
395 <          {
396 <          if ( v(i, j) >= 0.0 )
397 <            {
398 <            numPos++;
399 <            }
369 <          }
370 <    //    if ( numPos < ceil(double(n)/double(2.0)) )
371 <        if ( numPos < ceil_half_n)
372 <          {
373 <          for(i=0; i<n; i++)
374 <            {
375 <            v(i, j) *= -1.0;
376 <            }
377 <          }
378 <        }
362 >    // sort eigenfunctions                 these changes do not affect accuracy
363 >    for (j=0; j<n-1; j++) {                  // boundary incorrect
364 >      k = j;
365 >      tmp = w[k];
366 >      for (i=j+1; i<n; i++) {                // boundary incorrect, shifted already
367 >        if (w[i] >= tmp) {                   // why exchage if same?
368 >          k = i;
369 >          tmp = w[k];
370 >        }
371 >      }
372 >      if (k != j) {
373 >        w[k] = w[j];
374 >        w[j] = tmp;
375 >        for (i=0; i<n; i++) {
376 >          tmp = v(i, j);
377 >          v(i, j) = v(i, k);
378 >          v(i, k) = tmp;
379 >        }
380 >      }
381 >    }
382 >    // insure eigenvector consistency (i.e., Jacobi can compute vectors that
383 >    // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
384 >    // reek havoc in hyperstreamline/other stuff. We will select the most
385 >    // positive eigenvector.
386 >    int ceil_half_n = (n >> 1) + (n & 1);
387 >    for (j=0; j<n; j++) {
388 >      for (numPos=0, i=0; i<n; i++) {
389 >        if ( v(i, j) >= 0.0 ) {
390 >          numPos++;
391 >        }
392 >      }
393 >      //    if ( numPos < ceil(RealType(n)/RealType(2.0)) )
394 >      if ( numPos < ceil_half_n) {
395 >        for (i=0; i<n; i++) {
396 >          v(i, j) *= -1.0;
397 >        }
398 >      }
399 >    }
400  
401 <      if (n > 4)
402 <        {
403 <        delete [] b;
383 <        delete [] z;
384 <        }
385 <      return 1;
401 >    if (n > 4) {
402 >      delete [] b;
403 >      delete [] z;
404      }
405 +    return 1;
406 +  }
407  
408  
409 +  typedef SquareMatrix<RealType, 6> Mat6x6d;
410   }
411   #endif //MATH_SQUAREMATRIX_HPP
412  

Comparing trunk/src/math/SquareMatrix.hpp (property svn:keywords):
Revision 123 by tim, Wed Oct 20 18:07:08 2004 UTC vs.
Revision 1924 by gezelter, Mon Aug 5 21:46:11 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines