ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/math/SquareMatrix.hpp
Revision: 1924
Committed: Mon Aug 5 21:46:11 2013 UTC (11 years, 8 months ago) by gezelter
File size: 11845 byte(s)
Log Message:
Ewald fixes

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 /**
44 * @file SquareMatrix.hpp
45 * @author Teng Lin
46 * @date 10/11/2004
47 * @version 1.0
48 */
49 #ifndef MATH_SQUAREMATRIX_HPP
50 #define MATH_SQUAREMATRIX_HPP
51
52 #include "math/RectMatrix.hpp"
53 #include "utils/NumericConstant.hpp"
54
55 namespace OpenMD {
56
57 /**
58 * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
59 * @brief A square matrix class
60 * \tparam Real the element type
61 * \tparam Dim the dimension of the square matrix
62 */
63 template<typename Real, int Dim>
64 class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
65 public:
66 typedef Real ElemType;
67 typedef Real* ElemPoinerType;
68
69 /** default constructor */
70 SquareMatrix() {
71 for (unsigned int i = 0; i < Dim; i++)
72 for (unsigned int j = 0; j < Dim; j++)
73 this->data_[i][j] = 0.0;
74 }
75
76 /** Constructs and initializes every element of this matrix to a scalar */
77 SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){
78 }
79
80 /** Constructs and initializes from an array */
81 SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){
82 }
83
84
85 /** copy constructor */
86 SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
87 }
88
89 /** copy assignment operator */
90 SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
91 RectMatrix<Real, Dim, Dim>::operator=(m);
92 return *this;
93 }
94
95 /** Retunrs an identity matrix*/
96
97 static SquareMatrix<Real, Dim> identity() {
98 SquareMatrix<Real, Dim> m;
99
100 for (unsigned int i = 0; i < Dim; i++)
101 for (unsigned int j = 0; j < Dim; j++)
102 if (i == j)
103 m(i, j) = 1.0;
104 else
105 m(i, j) = 0.0;
106
107 return m;
108 }
109
110 /**
111 * Retunrs the inversion of this matrix.
112 * @todo need implementation
113 */
114 SquareMatrix<Real, Dim> inverse() {
115 SquareMatrix<Real, Dim> result;
116
117 return result;
118 }
119
120 /**
121 * Returns the determinant of this matrix.
122 * @todo need implementation
123 */
124 Real determinant() const {
125 Real det;
126 return det;
127 }
128
129 /** Returns the trace of this matrix. */
130 Real trace() const {
131 Real tmp = 0;
132
133 for (unsigned int i = 0; i < Dim ; i++)
134 tmp += this->data_[i][i];
135
136 return tmp;
137 }
138
139 /** Tests if this matrix is symmetrix. */
140 bool isSymmetric() const {
141 for (unsigned int i = 0; i < Dim - 1; i++)
142 for (unsigned int j = i; j < Dim; j++)
143 if (fabs(this->data_[i][j] - this->data_[j][i]) > epsilon)
144 return false;
145
146 return true;
147 }
148
149 /** Tests if this matrix is orthogonal. */
150 bool isOrthogonal() {
151 SquareMatrix<Real, Dim> tmp;
152
153 tmp = *this * transpose();
154
155 return tmp.isDiagonal();
156 }
157
158 /** Tests if this matrix is diagonal. */
159 bool isDiagonal() const {
160 for (unsigned int i = 0; i < Dim ; i++)
161 for (unsigned int j = 0; j < Dim; j++)
162 if (i !=j && fabs(this->data_[i][j]) > epsilon)
163 return false;
164
165 return true;
166 }
167
168 /**
169 * Returns a column vector that contains the elements from the
170 * diagonal of m in the order R(0) = m(0,0), R(1) = m(1,1), and so
171 * on.
172 */
173 Vector<Real, Dim> diagonals() const {
174 Vector<Real, Dim> result;
175 for (unsigned int i = 0; i < Dim; i++) {
176 result(i) = this->data_[i][i];
177 }
178 return result;
179 }
180
181 /** Tests if this matrix is the unit matrix. */
182 bool isUnitMatrix() const {
183 if (!isDiagonal())
184 return false;
185
186 for (unsigned int i = 0; i < Dim ; i++)
187 if (fabs(this->data_[i][i] - 1) > epsilon)
188 return false;
189
190 return true;
191 }
192
193 /** Return the transpose of this matrix */
194 SquareMatrix<Real, Dim> transpose() const{
195 SquareMatrix<Real, Dim> result;
196
197 for (unsigned int i = 0; i < Dim; i++)
198 for (unsigned int j = 0; j < Dim; j++)
199 result(j, i) = this->data_[i][j];
200
201 return result;
202 }
203
204 /** @todo need implementation */
205 void diagonalize() {
206 //jacobi(m, eigenValues, ortMat);
207 }
208
209 /**
210 * Jacobi iteration routines for computing eigenvalues/eigenvectors of
211 * real symmetric matrix
212 *
213 * @return true if success, otherwise return false
214 * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
215 * overwritten
216 * @param d will contain the eigenvalues of the matrix On return of this function
217 * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
218 * normalized and mutually orthogonal.
219 */
220
221 static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d,
222 SquareMatrix<Real, Dim>& v);
223 };//end SquareMatrix
224
225
226 /*=========================================================================
227
228 Program: Visualization Toolkit
229 Module: $RCSfile: SquareMatrix.hpp,v $
230
231 Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
232 All rights reserved.
233 See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
234
235 This software is distributed WITHOUT ANY WARRANTY; without even
236 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
237 PURPOSE. See the above copyright notice for more information.
238
239 =========================================================================*/
240
241 #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau); \
242 a(k, l)=h+s*(g-h*tau)
243
244 #define VTK_MAX_ROTATIONS 20
245
246 // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
247 // real symmetric matrix. Square nxn matrix a; size of matrix in n;
248 // output eigenvalues in w; and output eigenvectors in v. Resulting
249 // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
250 // normalized.
251 template<typename Real, int Dim>
252 int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
253 SquareMatrix<Real, Dim>& v) {
254 const int n = Dim;
255 int i, j, k, iq, ip, numPos;
256 Real tresh, theta, tau, t, sm, s, h, g, c, tmp;
257 Real bspace[4], zspace[4];
258 Real *b = bspace;
259 Real *z = zspace;
260
261 // only allocate memory if the matrix is large
262 if (n > 4) {
263 b = new Real[n];
264 z = new Real[n];
265 }
266
267 // initialize
268 for (ip=0; ip<n; ip++) {
269 for (iq=0; iq<n; iq++) {
270 v(ip, iq) = 0.0;
271 }
272 v(ip, ip) = 1.0;
273 }
274 for (ip=0; ip<n; ip++) {
275 b[ip] = w[ip] = a(ip, ip);
276 z[ip] = 0.0;
277 }
278
279 // begin rotation sequence
280 for (i=0; i<VTK_MAX_ROTATIONS; i++) {
281 sm = 0.0;
282 for (ip=0; ip<n-1; ip++) {
283 for (iq=ip+1; iq<n; iq++) {
284 sm += fabs(a(ip, iq));
285 }
286 }
287 if (sm == 0.0) {
288 break;
289 }
290
291 if (i < 3) { // first 3 sweeps
292 tresh = 0.2*sm/(n*n);
293 } else {
294 tresh = 0.0;
295 }
296
297 for (ip=0; ip<n-1; ip++) {
298 for (iq=ip+1; iq<n; iq++) {
299 g = 100.0*fabs(a(ip, iq));
300
301 // after 4 sweeps
302 if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
303 && (fabs(w[iq])+g) == fabs(w[iq])) {
304 a(ip, iq) = 0.0;
305 } else if (fabs(a(ip, iq)) > tresh) {
306 h = w[iq] - w[ip];
307 if ( (fabs(h)+g) == fabs(h)) {
308 t = (a(ip, iq)) / h;
309 } else {
310 theta = 0.5*h / (a(ip, iq));
311 t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
312 if (theta < 0.0) {
313 t = -t;
314 }
315 }
316 c = 1.0 / sqrt(1+t*t);
317 s = t*c;
318 tau = s/(1.0+c);
319 h = t*a(ip, iq);
320 z[ip] -= h;
321 z[iq] += h;
322 w[ip] -= h;
323 w[iq] += h;
324 a(ip, iq)=0.0;
325
326 // ip already shifted left by 1 unit
327 for (j = 0;j <= ip-1;j++) {
328 VTK_ROTATE(a,j,ip,j,iq);
329 }
330 // ip and iq already shifted left by 1 unit
331 for (j = ip+1;j <= iq-1;j++) {
332 VTK_ROTATE(a,ip,j,j,iq);
333 }
334 // iq already shifted left by 1 unit
335 for (j=iq+1; j<n; j++) {
336 VTK_ROTATE(a,ip,j,iq,j);
337 }
338 for (j=0; j<n; j++) {
339 VTK_ROTATE(v,j,ip,j,iq);
340 }
341 }
342 }
343 }
344
345 for (ip=0; ip<n; ip++) {
346 b[ip] += z[ip];
347 w[ip] = b[ip];
348 z[ip] = 0.0;
349 }
350 }
351
352 //// this is NEVER called
353 if ( i >= VTK_MAX_ROTATIONS ) {
354 std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl;
355 if (n > 4) {
356 delete[] b;
357 delete[] z;
358 }
359 return 0;
360 }
361
362 // sort eigenfunctions these changes do not affect accuracy
363 for (j=0; j<n-1; j++) { // boundary incorrect
364 k = j;
365 tmp = w[k];
366 for (i=j+1; i<n; i++) { // boundary incorrect, shifted already
367 if (w[i] >= tmp) { // why exchage if same?
368 k = i;
369 tmp = w[k];
370 }
371 }
372 if (k != j) {
373 w[k] = w[j];
374 w[j] = tmp;
375 for (i=0; i<n; i++) {
376 tmp = v(i, j);
377 v(i, j) = v(i, k);
378 v(i, k) = tmp;
379 }
380 }
381 }
382 // insure eigenvector consistency (i.e., Jacobi can compute vectors that
383 // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
384 // reek havoc in hyperstreamline/other stuff. We will select the most
385 // positive eigenvector.
386 int ceil_half_n = (n >> 1) + (n & 1);
387 for (j=0; j<n; j++) {
388 for (numPos=0, i=0; i<n; i++) {
389 if ( v(i, j) >= 0.0 ) {
390 numPos++;
391 }
392 }
393 // if ( numPos < ceil(RealType(n)/RealType(2.0)) )
394 if ( numPos < ceil_half_n) {
395 for (i=0; i<n; i++) {
396 v(i, j) *= -1.0;
397 }
398 }
399 }
400
401 if (n > 4) {
402 delete [] b;
403 delete [] z;
404 }
405 return 1;
406 }
407
408
409 typedef SquareMatrix<RealType, 6> Mat6x6d;
410 }
411 #endif //MATH_SQUAREMATRIX_HPP
412

Properties

Name Value
svn:keywords Author Id Revision Date