1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
/** |
44 |
* @file SquareMatrix.hpp |
45 |
* @author Teng Lin |
46 |
* @date 10/11/2004 |
47 |
* @version 1.0 |
48 |
*/ |
49 |
#ifndef MATH_SQUAREMATRIX_HPP |
50 |
#define MATH_SQUAREMATRIX_HPP |
51 |
|
52 |
#include "math/RectMatrix.hpp" |
53 |
#include "utils/NumericConstant.hpp" |
54 |
|
55 |
namespace OpenMD { |
56 |
|
57 |
/** |
58 |
* @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp" |
59 |
* @brief A square matrix class |
60 |
* \tparam Real the element type |
61 |
* \tparam Dim the dimension of the square matrix |
62 |
*/ |
63 |
template<typename Real, int Dim> |
64 |
class SquareMatrix : public RectMatrix<Real, Dim, Dim> { |
65 |
public: |
66 |
typedef Real ElemType; |
67 |
typedef Real* ElemPoinerType; |
68 |
|
69 |
/** default constructor */ |
70 |
SquareMatrix() { |
71 |
for (unsigned int i = 0; i < Dim; i++) |
72 |
for (unsigned int j = 0; j < Dim; j++) |
73 |
this->data_[i][j] = 0.0; |
74 |
} |
75 |
|
76 |
/** Constructs and initializes every element of this matrix to a scalar */ |
77 |
SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){ |
78 |
} |
79 |
|
80 |
/** Constructs and initializes from an array */ |
81 |
SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){ |
82 |
} |
83 |
|
84 |
|
85 |
/** copy constructor */ |
86 |
SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) { |
87 |
} |
88 |
|
89 |
/** copy assignment operator */ |
90 |
SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) { |
91 |
RectMatrix<Real, Dim, Dim>::operator=(m); |
92 |
return *this; |
93 |
} |
94 |
|
95 |
/** Retunrs an identity matrix*/ |
96 |
|
97 |
static SquareMatrix<Real, Dim> identity() { |
98 |
SquareMatrix<Real, Dim> m; |
99 |
|
100 |
for (unsigned int i = 0; i < Dim; i++) |
101 |
for (unsigned int j = 0; j < Dim; j++) |
102 |
if (i == j) |
103 |
m(i, j) = 1.0; |
104 |
else |
105 |
m(i, j) = 0.0; |
106 |
|
107 |
return m; |
108 |
} |
109 |
|
110 |
/** |
111 |
* Retunrs the inversion of this matrix. |
112 |
* @todo need implementation |
113 |
*/ |
114 |
SquareMatrix<Real, Dim> inverse() { |
115 |
SquareMatrix<Real, Dim> result; |
116 |
|
117 |
return result; |
118 |
} |
119 |
|
120 |
/** |
121 |
* Returns the determinant of this matrix. |
122 |
* @todo need implementation |
123 |
*/ |
124 |
Real determinant() const { |
125 |
Real det; |
126 |
return det; |
127 |
} |
128 |
|
129 |
/** Returns the trace of this matrix. */ |
130 |
Real trace() const { |
131 |
Real tmp = 0; |
132 |
|
133 |
for (unsigned int i = 0; i < Dim ; i++) |
134 |
tmp += this->data_[i][i]; |
135 |
|
136 |
return tmp; |
137 |
} |
138 |
|
139 |
/** Tests if this matrix is symmetrix. */ |
140 |
bool isSymmetric() const { |
141 |
for (unsigned int i = 0; i < Dim - 1; i++) |
142 |
for (unsigned int j = i; j < Dim; j++) |
143 |
if (fabs(this->data_[i][j] - this->data_[j][i]) > epsilon) |
144 |
return false; |
145 |
|
146 |
return true; |
147 |
} |
148 |
|
149 |
/** Tests if this matrix is orthogonal. */ |
150 |
bool isOrthogonal() { |
151 |
SquareMatrix<Real, Dim> tmp; |
152 |
|
153 |
tmp = *this * transpose(); |
154 |
|
155 |
return tmp.isDiagonal(); |
156 |
} |
157 |
|
158 |
/** Tests if this matrix is diagonal. */ |
159 |
bool isDiagonal() const { |
160 |
for (unsigned int i = 0; i < Dim ; i++) |
161 |
for (unsigned int j = 0; j < Dim; j++) |
162 |
if (i !=j && fabs(this->data_[i][j]) > epsilon) |
163 |
return false; |
164 |
|
165 |
return true; |
166 |
} |
167 |
|
168 |
/** |
169 |
* Returns a column vector that contains the elements from the |
170 |
* diagonal of m in the order R(0) = m(0,0), R(1) = m(1,1), and so |
171 |
* on. |
172 |
*/ |
173 |
Vector<Real, Dim> diagonals() const { |
174 |
Vector<Real, Dim> result; |
175 |
for (unsigned int i = 0; i < Dim; i++) { |
176 |
result(i) = this->data_[i][i]; |
177 |
} |
178 |
return result; |
179 |
} |
180 |
|
181 |
/** Tests if this matrix is the unit matrix. */ |
182 |
bool isUnitMatrix() const { |
183 |
if (!isDiagonal()) |
184 |
return false; |
185 |
|
186 |
for (unsigned int i = 0; i < Dim ; i++) |
187 |
if (fabs(this->data_[i][i] - 1) > epsilon) |
188 |
return false; |
189 |
|
190 |
return true; |
191 |
} |
192 |
|
193 |
/** Return the transpose of this matrix */ |
194 |
SquareMatrix<Real, Dim> transpose() const{ |
195 |
SquareMatrix<Real, Dim> result; |
196 |
|
197 |
for (unsigned int i = 0; i < Dim; i++) |
198 |
for (unsigned int j = 0; j < Dim; j++) |
199 |
result(j, i) = this->data_[i][j]; |
200 |
|
201 |
return result; |
202 |
} |
203 |
|
204 |
/** @todo need implementation */ |
205 |
void diagonalize() { |
206 |
//jacobi(m, eigenValues, ortMat); |
207 |
} |
208 |
|
209 |
/** |
210 |
* Jacobi iteration routines for computing eigenvalues/eigenvectors of |
211 |
* real symmetric matrix |
212 |
* |
213 |
* @return true if success, otherwise return false |
214 |
* @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is |
215 |
* overwritten |
216 |
* @param d will contain the eigenvalues of the matrix On return of this function |
217 |
* @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are |
218 |
* normalized and mutually orthogonal. |
219 |
*/ |
220 |
|
221 |
static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d, |
222 |
SquareMatrix<Real, Dim>& v); |
223 |
};//end SquareMatrix |
224 |
|
225 |
|
226 |
/*========================================================================= |
227 |
|
228 |
Program: Visualization Toolkit |
229 |
Module: $RCSfile: SquareMatrix.hpp,v $ |
230 |
|
231 |
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen |
232 |
All rights reserved. |
233 |
See Copyright.txt or http://www.kitware.com/Copyright.htm for details. |
234 |
|
235 |
This software is distributed WITHOUT ANY WARRANTY; without even |
236 |
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR |
237 |
PURPOSE. See the above copyright notice for more information. |
238 |
|
239 |
=========================================================================*/ |
240 |
|
241 |
#define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau); \ |
242 |
a(k, l)=h+s*(g-h*tau) |
243 |
|
244 |
#define VTK_MAX_ROTATIONS 20 |
245 |
|
246 |
// Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn |
247 |
// real symmetric matrix. Square nxn matrix a; size of matrix in n; |
248 |
// output eigenvalues in w; and output eigenvectors in v. Resulting |
249 |
// eigenvalues/vectors are sorted in decreasing order; eigenvectors are |
250 |
// normalized. |
251 |
template<typename Real, int Dim> |
252 |
int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w, |
253 |
SquareMatrix<Real, Dim>& v) { |
254 |
const int n = Dim; |
255 |
int i, j, k, iq, ip, numPos; |
256 |
Real tresh, theta, tau, t, sm, s, h, g, c, tmp; |
257 |
Real bspace[4], zspace[4]; |
258 |
Real *b = bspace; |
259 |
Real *z = zspace; |
260 |
|
261 |
// only allocate memory if the matrix is large |
262 |
if (n > 4) { |
263 |
b = new Real[n]; |
264 |
z = new Real[n]; |
265 |
} |
266 |
|
267 |
// initialize |
268 |
for (ip=0; ip<n; ip++) { |
269 |
for (iq=0; iq<n; iq++) { |
270 |
v(ip, iq) = 0.0; |
271 |
} |
272 |
v(ip, ip) = 1.0; |
273 |
} |
274 |
for (ip=0; ip<n; ip++) { |
275 |
b[ip] = w[ip] = a(ip, ip); |
276 |
z[ip] = 0.0; |
277 |
} |
278 |
|
279 |
// begin rotation sequence |
280 |
for (i=0; i<VTK_MAX_ROTATIONS; i++) { |
281 |
sm = 0.0; |
282 |
for (ip=0; ip<n-1; ip++) { |
283 |
for (iq=ip+1; iq<n; iq++) { |
284 |
sm += fabs(a(ip, iq)); |
285 |
} |
286 |
} |
287 |
if (sm == 0.0) { |
288 |
break; |
289 |
} |
290 |
|
291 |
if (i < 3) { // first 3 sweeps |
292 |
tresh = 0.2*sm/(n*n); |
293 |
} else { |
294 |
tresh = 0.0; |
295 |
} |
296 |
|
297 |
for (ip=0; ip<n-1; ip++) { |
298 |
for (iq=ip+1; iq<n; iq++) { |
299 |
g = 100.0*fabs(a(ip, iq)); |
300 |
|
301 |
// after 4 sweeps |
302 |
if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip]) |
303 |
&& (fabs(w[iq])+g) == fabs(w[iq])) { |
304 |
a(ip, iq) = 0.0; |
305 |
} else if (fabs(a(ip, iq)) > tresh) { |
306 |
h = w[iq] - w[ip]; |
307 |
if ( (fabs(h)+g) == fabs(h)) { |
308 |
t = (a(ip, iq)) / h; |
309 |
} else { |
310 |
theta = 0.5*h / (a(ip, iq)); |
311 |
t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta)); |
312 |
if (theta < 0.0) { |
313 |
t = -t; |
314 |
} |
315 |
} |
316 |
c = 1.0 / sqrt(1+t*t); |
317 |
s = t*c; |
318 |
tau = s/(1.0+c); |
319 |
h = t*a(ip, iq); |
320 |
z[ip] -= h; |
321 |
z[iq] += h; |
322 |
w[ip] -= h; |
323 |
w[iq] += h; |
324 |
a(ip, iq)=0.0; |
325 |
|
326 |
// ip already shifted left by 1 unit |
327 |
for (j = 0;j <= ip-1;j++) { |
328 |
VTK_ROTATE(a,j,ip,j,iq); |
329 |
} |
330 |
// ip and iq already shifted left by 1 unit |
331 |
for (j = ip+1;j <= iq-1;j++) { |
332 |
VTK_ROTATE(a,ip,j,j,iq); |
333 |
} |
334 |
// iq already shifted left by 1 unit |
335 |
for (j=iq+1; j<n; j++) { |
336 |
VTK_ROTATE(a,ip,j,iq,j); |
337 |
} |
338 |
for (j=0; j<n; j++) { |
339 |
VTK_ROTATE(v,j,ip,j,iq); |
340 |
} |
341 |
} |
342 |
} |
343 |
} |
344 |
|
345 |
for (ip=0; ip<n; ip++) { |
346 |
b[ip] += z[ip]; |
347 |
w[ip] = b[ip]; |
348 |
z[ip] = 0.0; |
349 |
} |
350 |
} |
351 |
|
352 |
//// this is NEVER called |
353 |
if ( i >= VTK_MAX_ROTATIONS ) { |
354 |
std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl; |
355 |
if (n > 4) { |
356 |
delete[] b; |
357 |
delete[] z; |
358 |
} |
359 |
return 0; |
360 |
} |
361 |
|
362 |
// sort eigenfunctions these changes do not affect accuracy |
363 |
for (j=0; j<n-1; j++) { // boundary incorrect |
364 |
k = j; |
365 |
tmp = w[k]; |
366 |
for (i=j+1; i<n; i++) { // boundary incorrect, shifted already |
367 |
if (w[i] >= tmp) { // why exchage if same? |
368 |
k = i; |
369 |
tmp = w[k]; |
370 |
} |
371 |
} |
372 |
if (k != j) { |
373 |
w[k] = w[j]; |
374 |
w[j] = tmp; |
375 |
for (i=0; i<n; i++) { |
376 |
tmp = v(i, j); |
377 |
v(i, j) = v(i, k); |
378 |
v(i, k) = tmp; |
379 |
} |
380 |
} |
381 |
} |
382 |
// insure eigenvector consistency (i.e., Jacobi can compute vectors that |
383 |
// are negative of one another (.707,.707,0) and (-.707,-.707,0). This can |
384 |
// reek havoc in hyperstreamline/other stuff. We will select the most |
385 |
// positive eigenvector. |
386 |
int ceil_half_n = (n >> 1) + (n & 1); |
387 |
for (j=0; j<n; j++) { |
388 |
for (numPos=0, i=0; i<n; i++) { |
389 |
if ( v(i, j) >= 0.0 ) { |
390 |
numPos++; |
391 |
} |
392 |
} |
393 |
// if ( numPos < ceil(RealType(n)/RealType(2.0)) ) |
394 |
if ( numPos < ceil_half_n) { |
395 |
for (i=0; i<n; i++) { |
396 |
v(i, j) *= -1.0; |
397 |
} |
398 |
} |
399 |
} |
400 |
|
401 |
if (n > 4) { |
402 |
delete [] b; |
403 |
delete [] z; |
404 |
} |
405 |
return 1; |
406 |
} |
407 |
|
408 |
|
409 |
typedef SquareMatrix<RealType, 6> Mat6x6d; |
410 |
} |
411 |
#endif //MATH_SQUAREMATRIX_HPP |
412 |
|