ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/math/SquareMatrix.hpp
Revision: 963
Committed: Wed May 17 21:51:42 2006 UTC (18 years, 11 months ago) by tim
File size: 11301 byte(s)
Log Message:
Adding single precision capabilities to c++ side

File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 tim 70 *
4 gezelter 246 * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40 tim 70 */
41 gezelter 246
42 tim 70 /**
43     * @file SquareMatrix.hpp
44     * @author Teng Lin
45     * @date 10/11/2004
46     * @version 1.0
47     */
48 gezelter 507 #ifndef MATH_SQUAREMATRIX_HPP
49 tim 70 #define MATH_SQUAREMATRIX_HPP
50    
51 tim 74 #include "math/RectMatrix.hpp"
52 gezelter 956 #include "utils/NumericConstant.hpp"
53 tim 70
54     namespace oopse {
55    
56 gezelter 507 /**
57     * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
58     * @brief A square matrix class
59     * @template Real the element type
60     * @template Dim the dimension of the square matrix
61     */
62     template<typename Real, int Dim>
63     class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
64     public:
65     typedef Real ElemType;
66     typedef Real* ElemPoinerType;
67 tim 70
68 gezelter 507 /** default constructor */
69     SquareMatrix() {
70     for (unsigned int i = 0; i < Dim; i++)
71     for (unsigned int j = 0; j < Dim; j++)
72     this->data_[i][j] = 0.0;
73     }
74 tim 70
75 gezelter 507 /** Constructs and initializes every element of this matrix to a scalar */
76     SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){
77     }
78 tim 151
79 gezelter 507 /** Constructs and initializes from an array */
80     SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){
81     }
82 tim 151
83    
84 gezelter 507 /** copy constructor */
85     SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
86     }
87 tim 70
88 gezelter 507 /** copy assignment operator */
89     SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
90     RectMatrix<Real, Dim, Dim>::operator=(m);
91     return *this;
92     }
93 tim 137
94 gezelter 507 /** Retunrs an identity matrix*/
95 tim 74
96 gezelter 507 static SquareMatrix<Real, Dim> identity() {
97     SquareMatrix<Real, Dim> m;
98 tim 137
99 gezelter 507 for (unsigned int i = 0; i < Dim; i++)
100     for (unsigned int j = 0; j < Dim; j++)
101     if (i == j)
102     m(i, j) = 1.0;
103     else
104     m(i, j) = 0.0;
105 tim 70
106 gezelter 507 return m;
107     }
108 tim 74
109 gezelter 507 /**
110     * Retunrs the inversion of this matrix.
111     * @todo need implementation
112     */
113     SquareMatrix<Real, Dim> inverse() {
114     SquareMatrix<Real, Dim> result;
115 tim 70
116 gezelter 507 return result;
117     }
118 tim 70
119 gezelter 507 /**
120     * Returns the determinant of this matrix.
121     * @todo need implementation
122     */
123     Real determinant() const {
124     Real det;
125     return det;
126     }
127 tim 70
128 gezelter 507 /** Returns the trace of this matrix. */
129     Real trace() const {
130     Real tmp = 0;
131 tim 137
132 gezelter 507 for (unsigned int i = 0; i < Dim ; i++)
133     tmp += this->data_[i][i];
134 tim 70
135 gezelter 507 return tmp;
136     }
137 tim 70
138 gezelter 507 /** Tests if this matrix is symmetrix. */
139     bool isSymmetric() const {
140     for (unsigned int i = 0; i < Dim - 1; i++)
141     for (unsigned int j = i; j < Dim; j++)
142 gezelter 956 if (fabs(this->data_[i][j] - this->data_[j][i]) > epsilon)
143 gezelter 507 return false;
144 tim 137
145 gezelter 507 return true;
146     }
147 tim 70
148 gezelter 507 /** Tests if this matrix is orthogonal. */
149     bool isOrthogonal() {
150     SquareMatrix<Real, Dim> tmp;
151 tim 70
152 gezelter 507 tmp = *this * transpose();
153 tim 70
154 gezelter 507 return tmp.isDiagonal();
155     }
156 tim 70
157 gezelter 507 /** Tests if this matrix is diagonal. */
158     bool isDiagonal() const {
159     for (unsigned int i = 0; i < Dim ; i++)
160     for (unsigned int j = 0; j < Dim; j++)
161 gezelter 956 if (i !=j && fabs(this->data_[i][j]) > epsilon)
162 gezelter 507 return false;
163 tim 137
164 gezelter 507 return true;
165     }
166 tim 137
167 gezelter 507 /** Tests if this matrix is the unit matrix. */
168     bool isUnitMatrix() const {
169     if (!isDiagonal())
170     return false;
171 tim 70
172 gezelter 507 for (unsigned int i = 0; i < Dim ; i++)
173 gezelter 956 if (fabs(this->data_[i][i] - 1) > epsilon)
174 gezelter 507 return false;
175 tim 137
176 gezelter 507 return true;
177     }
178 tim 70
179 gezelter 507 /** Return the transpose of this matrix */
180     SquareMatrix<Real, Dim> transpose() const{
181     SquareMatrix<Real, Dim> result;
182 tim 273
183 gezelter 507 for (unsigned int i = 0; i < Dim; i++)
184     for (unsigned int j = 0; j < Dim; j++)
185     result(j, i) = this->data_[i][j];
186 tim 273
187 gezelter 507 return result;
188     }
189 tim 273
190 gezelter 507 /** @todo need implementation */
191     void diagonalize() {
192     //jacobi(m, eigenValues, ortMat);
193     }
194 tim 76
195 gezelter 507 /**
196     * Jacobi iteration routines for computing eigenvalues/eigenvectors of
197     * real symmetric matrix
198     *
199     * @return true if success, otherwise return false
200     * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
201     * overwritten
202     * @param w will contain the eigenvalues of the matrix On return of this function
203     * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
204     * normalized and mutually orthogonal.
205     */
206 tim 137
207 gezelter 507 static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d,
208     SquareMatrix<Real, Dim>& v);
209     };//end SquareMatrix
210 tim 70
211 tim 76
212 gezelter 507 /*=========================================================================
213 tim 76
214 tim 123 Program: Visualization Toolkit
215     Module: $RCSfile: SquareMatrix.hpp,v $
216 tim 76
217 tim 123 Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
218     All rights reserved.
219     See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
220    
221 gezelter 507 This software is distributed WITHOUT ANY WARRANTY; without even
222     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
223     PURPOSE. See the above copyright notice for more information.
224 tim 123
225 gezelter 507 =========================================================================*/
226 tim 123
227 gezelter 507 #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau); \
228     a(k, l)=h+s*(g-h*tau)
229 tim 123
230     #define VTK_MAX_ROTATIONS 20
231    
232 gezelter 507 // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
233     // real symmetric matrix. Square nxn matrix a; size of matrix in n;
234     // output eigenvalues in w; and output eigenvectors in v. Resulting
235     // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
236     // normalized.
237     template<typename Real, int Dim>
238     int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
239     SquareMatrix<Real, Dim>& v) {
240     const int n = Dim;
241     int i, j, k, iq, ip, numPos;
242     Real tresh, theta, tau, t, sm, s, h, g, c, tmp;
243     Real bspace[4], zspace[4];
244     Real *b = bspace;
245     Real *z = zspace;
246 tim 123
247 gezelter 507 // only allocate memory if the matrix is large
248     if (n > 4) {
249     b = new Real[n];
250     z = new Real[n];
251     }
252 tim 123
253 gezelter 507 // initialize
254     for (ip=0; ip<n; ip++) {
255     for (iq=0; iq<n; iq++) {
256     v(ip, iq) = 0.0;
257     }
258     v(ip, ip) = 1.0;
259     }
260     for (ip=0; ip<n; ip++) {
261     b[ip] = w[ip] = a(ip, ip);
262     z[ip] = 0.0;
263     }
264 tim 76
265 gezelter 507 // begin rotation sequence
266     for (i=0; i<VTK_MAX_ROTATIONS; i++) {
267     sm = 0.0;
268     for (ip=0; ip<n-1; ip++) {
269     for (iq=ip+1; iq<n; iq++) {
270     sm += fabs(a(ip, iq));
271     }
272     }
273     if (sm == 0.0) {
274     break;
275     }
276 tim 76
277 gezelter 507 if (i < 3) { // first 3 sweeps
278     tresh = 0.2*sm/(n*n);
279     } else {
280     tresh = 0.0;
281     }
282 tim 76
283 gezelter 507 for (ip=0; ip<n-1; ip++) {
284     for (iq=ip+1; iq<n; iq++) {
285     g = 100.0*fabs(a(ip, iq));
286 tim 76
287 gezelter 507 // after 4 sweeps
288     if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
289     && (fabs(w[iq])+g) == fabs(w[iq])) {
290     a(ip, iq) = 0.0;
291     } else if (fabs(a(ip, iq)) > tresh) {
292     h = w[iq] - w[ip];
293     if ( (fabs(h)+g) == fabs(h)) {
294     t = (a(ip, iq)) / h;
295     } else {
296     theta = 0.5*h / (a(ip, iq));
297     t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
298     if (theta < 0.0) {
299     t = -t;
300     }
301     }
302     c = 1.0 / sqrt(1+t*t);
303     s = t*c;
304     tau = s/(1.0+c);
305     h = t*a(ip, iq);
306     z[ip] -= h;
307     z[iq] += h;
308     w[ip] -= h;
309     w[iq] += h;
310     a(ip, iq)=0.0;
311 tim 76
312 gezelter 507 // ip already shifted left by 1 unit
313     for (j = 0;j <= ip-1;j++) {
314     VTK_ROTATE(a,j,ip,j,iq);
315     }
316     // ip and iq already shifted left by 1 unit
317     for (j = ip+1;j <= iq-1;j++) {
318     VTK_ROTATE(a,ip,j,j,iq);
319     }
320     // iq already shifted left by 1 unit
321     for (j=iq+1; j<n; j++) {
322     VTK_ROTATE(a,ip,j,iq,j);
323     }
324     for (j=0; j<n; j++) {
325     VTK_ROTATE(v,j,ip,j,iq);
326     }
327     }
328     }
329     }
330 tim 93
331 gezelter 507 for (ip=0; ip<n; ip++) {
332     b[ip] += z[ip];
333     w[ip] = b[ip];
334     z[ip] = 0.0;
335     }
336     }
337 tim 93
338 gezelter 507 //// this is NEVER called
339     if ( i >= VTK_MAX_ROTATIONS ) {
340     std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl;
341     return 0;
342     }
343 tim 76
344 gezelter 507 // sort eigenfunctions these changes do not affect accuracy
345     for (j=0; j<n-1; j++) { // boundary incorrect
346     k = j;
347     tmp = w[k];
348     for (i=j+1; i<n; i++) { // boundary incorrect, shifted already
349     if (w[i] >= tmp) { // why exchage if same?
350     k = i;
351     tmp = w[k];
352     }
353     }
354     if (k != j) {
355     w[k] = w[j];
356     w[j] = tmp;
357     for (i=0; i<n; i++) {
358     tmp = v(i, j);
359     v(i, j) = v(i, k);
360     v(i, k) = tmp;
361     }
362     }
363     }
364     // insure eigenvector consistency (i.e., Jacobi can compute vectors that
365     // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
366     // reek havoc in hyperstreamline/other stuff. We will select the most
367     // positive eigenvector.
368     int ceil_half_n = (n >> 1) + (n & 1);
369     for (j=0; j<n; j++) {
370     for (numPos=0, i=0; i<n; i++) {
371     if ( v(i, j) >= 0.0 ) {
372     numPos++;
373     }
374     }
375 tim 963 // if ( numPos < ceil(RealType(n)/RealType(2.0)) )
376 gezelter 507 if ( numPos < ceil_half_n) {
377     for (i=0; i<n; i++) {
378     v(i, j) *= -1.0;
379     }
380     }
381     }
382 tim 76
383 gezelter 507 if (n > 4) {
384     delete [] b;
385     delete [] z;
386 tim 76 }
387 gezelter 507 return 1;
388     }
389 tim 76
390    
391 tim 963 typedef SquareMatrix<RealType, 6> Mat6x6d;
392 tim 76 }
393 tim 123 #endif //MATH_SQUAREMATRIX_HPP
394 tim 76