ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/math/SquareMatrix.hpp
Revision: 1924
Committed: Mon Aug 5 21:46:11 2013 UTC (11 years, 8 months ago) by gezelter
File size: 11845 byte(s)
Log Message:
Ewald fixes

File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 tim 70 *
4 gezelter 246 * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 246 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 246 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 gezelter 1879 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 gezelter 1782 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 tim 70 */
42 gezelter 246
43 tim 70 /**
44     * @file SquareMatrix.hpp
45     * @author Teng Lin
46     * @date 10/11/2004
47     * @version 1.0
48     */
49 gezelter 507 #ifndef MATH_SQUAREMATRIX_HPP
50 tim 70 #define MATH_SQUAREMATRIX_HPP
51    
52 tim 74 #include "math/RectMatrix.hpp"
53 gezelter 956 #include "utils/NumericConstant.hpp"
54 tim 70
55 gezelter 1390 namespace OpenMD {
56 tim 70
57 gezelter 507 /**
58     * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp"
59     * @brief A square matrix class
60 gezelter 1879 * \tparam Real the element type
61     * \tparam Dim the dimension of the square matrix
62 gezelter 507 */
63     template<typename Real, int Dim>
64     class SquareMatrix : public RectMatrix<Real, Dim, Dim> {
65     public:
66     typedef Real ElemType;
67     typedef Real* ElemPoinerType;
68 tim 70
69 gezelter 507 /** default constructor */
70     SquareMatrix() {
71     for (unsigned int i = 0; i < Dim; i++)
72     for (unsigned int j = 0; j < Dim; j++)
73     this->data_[i][j] = 0.0;
74     }
75 tim 70
76 gezelter 507 /** Constructs and initializes every element of this matrix to a scalar */
77     SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){
78     }
79 tim 151
80 gezelter 507 /** Constructs and initializes from an array */
81     SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){
82     }
83 tim 151
84    
85 gezelter 507 /** copy constructor */
86     SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) {
87     }
88 tim 70
89 gezelter 507 /** copy assignment operator */
90     SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) {
91     RectMatrix<Real, Dim, Dim>::operator=(m);
92     return *this;
93     }
94 tim 137
95 gezelter 507 /** Retunrs an identity matrix*/
96 tim 74
97 gezelter 507 static SquareMatrix<Real, Dim> identity() {
98     SquareMatrix<Real, Dim> m;
99 tim 137
100 gezelter 507 for (unsigned int i = 0; i < Dim; i++)
101     for (unsigned int j = 0; j < Dim; j++)
102     if (i == j)
103     m(i, j) = 1.0;
104     else
105     m(i, j) = 0.0;
106 tim 70
107 gezelter 507 return m;
108     }
109 tim 74
110 gezelter 507 /**
111     * Retunrs the inversion of this matrix.
112     * @todo need implementation
113     */
114     SquareMatrix<Real, Dim> inverse() {
115     SquareMatrix<Real, Dim> result;
116 tim 70
117 gezelter 507 return result;
118     }
119 tim 70
120 gezelter 507 /**
121     * Returns the determinant of this matrix.
122     * @todo need implementation
123     */
124     Real determinant() const {
125     Real det;
126     return det;
127     }
128 gezelter 1879
129 gezelter 507 /** Returns the trace of this matrix. */
130     Real trace() const {
131     Real tmp = 0;
132 tim 137
133 gezelter 507 for (unsigned int i = 0; i < Dim ; i++)
134     tmp += this->data_[i][i];
135 tim 70
136 gezelter 507 return tmp;
137     }
138 tim 70
139 gezelter 507 /** Tests if this matrix is symmetrix. */
140     bool isSymmetric() const {
141     for (unsigned int i = 0; i < Dim - 1; i++)
142     for (unsigned int j = i; j < Dim; j++)
143 gezelter 956 if (fabs(this->data_[i][j] - this->data_[j][i]) > epsilon)
144 gezelter 507 return false;
145 tim 137
146 gezelter 507 return true;
147     }
148 tim 70
149 gezelter 507 /** Tests if this matrix is orthogonal. */
150     bool isOrthogonal() {
151     SquareMatrix<Real, Dim> tmp;
152 tim 70
153 gezelter 507 tmp = *this * transpose();
154 tim 70
155 gezelter 507 return tmp.isDiagonal();
156     }
157 tim 70
158 gezelter 507 /** Tests if this matrix is diagonal. */
159     bool isDiagonal() const {
160     for (unsigned int i = 0; i < Dim ; i++)
161     for (unsigned int j = 0; j < Dim; j++)
162 gezelter 956 if (i !=j && fabs(this->data_[i][j]) > epsilon)
163 gezelter 507 return false;
164 tim 137
165 gezelter 507 return true;
166     }
167 tim 137
168 gezelter 1782 /**
169     * Returns a column vector that contains the elements from the
170     * diagonal of m in the order R(0) = m(0,0), R(1) = m(1,1), and so
171     * on.
172     */
173     Vector<Real, Dim> diagonals() const {
174     Vector<Real, Dim> result;
175     for (unsigned int i = 0; i < Dim; i++) {
176     result(i) = this->data_[i][i];
177     }
178     return result;
179     }
180    
181 gezelter 507 /** Tests if this matrix is the unit matrix. */
182     bool isUnitMatrix() const {
183     if (!isDiagonal())
184     return false;
185 tim 70
186 gezelter 507 for (unsigned int i = 0; i < Dim ; i++)
187 gezelter 956 if (fabs(this->data_[i][i] - 1) > epsilon)
188 gezelter 507 return false;
189 tim 137
190 gezelter 507 return true;
191     }
192 tim 70
193 gezelter 507 /** Return the transpose of this matrix */
194     SquareMatrix<Real, Dim> transpose() const{
195     SquareMatrix<Real, Dim> result;
196 tim 273
197 gezelter 507 for (unsigned int i = 0; i < Dim; i++)
198     for (unsigned int j = 0; j < Dim; j++)
199     result(j, i) = this->data_[i][j];
200 tim 273
201 gezelter 507 return result;
202     }
203 tim 273
204 gezelter 507 /** @todo need implementation */
205     void diagonalize() {
206     //jacobi(m, eigenValues, ortMat);
207     }
208 tim 76
209 gezelter 507 /**
210     * Jacobi iteration routines for computing eigenvalues/eigenvectors of
211     * real symmetric matrix
212     *
213     * @return true if success, otherwise return false
214     * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is
215     * overwritten
216 gezelter 1879 * @param d will contain the eigenvalues of the matrix On return of this function
217 gezelter 507 * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are
218     * normalized and mutually orthogonal.
219     */
220 tim 137
221 gezelter 507 static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d,
222     SquareMatrix<Real, Dim>& v);
223     };//end SquareMatrix
224 tim 70
225 tim 76
226 gezelter 507 /*=========================================================================
227 tim 76
228 tim 123 Program: Visualization Toolkit
229     Module: $RCSfile: SquareMatrix.hpp,v $
230 tim 76
231 tim 123 Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
232     All rights reserved.
233     See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
234    
235 gezelter 507 This software is distributed WITHOUT ANY WARRANTY; without even
236     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
237     PURPOSE. See the above copyright notice for more information.
238 tim 123
239 gezelter 507 =========================================================================*/
240 tim 123
241 gezelter 507 #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau); \
242     a(k, l)=h+s*(g-h*tau)
243 tim 123
244     #define VTK_MAX_ROTATIONS 20
245    
246 gezelter 507 // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
247     // real symmetric matrix. Square nxn matrix a; size of matrix in n;
248     // output eigenvalues in w; and output eigenvectors in v. Resulting
249     // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
250     // normalized.
251     template<typename Real, int Dim>
252     int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w,
253     SquareMatrix<Real, Dim>& v) {
254     const int n = Dim;
255     int i, j, k, iq, ip, numPos;
256     Real tresh, theta, tau, t, sm, s, h, g, c, tmp;
257     Real bspace[4], zspace[4];
258     Real *b = bspace;
259     Real *z = zspace;
260 tim 123
261 gezelter 507 // only allocate memory if the matrix is large
262     if (n > 4) {
263     b = new Real[n];
264     z = new Real[n];
265     }
266 tim 123
267 gezelter 507 // initialize
268     for (ip=0; ip<n; ip++) {
269     for (iq=0; iq<n; iq++) {
270     v(ip, iq) = 0.0;
271     }
272     v(ip, ip) = 1.0;
273     }
274     for (ip=0; ip<n; ip++) {
275     b[ip] = w[ip] = a(ip, ip);
276     z[ip] = 0.0;
277     }
278 tim 76
279 gezelter 507 // begin rotation sequence
280     for (i=0; i<VTK_MAX_ROTATIONS; i++) {
281     sm = 0.0;
282     for (ip=0; ip<n-1; ip++) {
283     for (iq=ip+1; iq<n; iq++) {
284     sm += fabs(a(ip, iq));
285     }
286     }
287     if (sm == 0.0) {
288     break;
289     }
290 tim 76
291 gezelter 507 if (i < 3) { // first 3 sweeps
292     tresh = 0.2*sm/(n*n);
293     } else {
294     tresh = 0.0;
295     }
296 tim 76
297 gezelter 507 for (ip=0; ip<n-1; ip++) {
298     for (iq=ip+1; iq<n; iq++) {
299     g = 100.0*fabs(a(ip, iq));
300 tim 76
301 gezelter 507 // after 4 sweeps
302     if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
303     && (fabs(w[iq])+g) == fabs(w[iq])) {
304     a(ip, iq) = 0.0;
305     } else if (fabs(a(ip, iq)) > tresh) {
306     h = w[iq] - w[ip];
307     if ( (fabs(h)+g) == fabs(h)) {
308     t = (a(ip, iq)) / h;
309     } else {
310     theta = 0.5*h / (a(ip, iq));
311     t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
312     if (theta < 0.0) {
313     t = -t;
314     }
315     }
316     c = 1.0 / sqrt(1+t*t);
317     s = t*c;
318     tau = s/(1.0+c);
319     h = t*a(ip, iq);
320     z[ip] -= h;
321     z[iq] += h;
322     w[ip] -= h;
323     w[iq] += h;
324     a(ip, iq)=0.0;
325 tim 76
326 gezelter 507 // ip already shifted left by 1 unit
327     for (j = 0;j <= ip-1;j++) {
328     VTK_ROTATE(a,j,ip,j,iq);
329     }
330     // ip and iq already shifted left by 1 unit
331     for (j = ip+1;j <= iq-1;j++) {
332     VTK_ROTATE(a,ip,j,j,iq);
333     }
334     // iq already shifted left by 1 unit
335     for (j=iq+1; j<n; j++) {
336     VTK_ROTATE(a,ip,j,iq,j);
337     }
338     for (j=0; j<n; j++) {
339     VTK_ROTATE(v,j,ip,j,iq);
340     }
341     }
342     }
343     }
344 tim 93
345 gezelter 507 for (ip=0; ip<n; ip++) {
346     b[ip] += z[ip];
347     w[ip] = b[ip];
348     z[ip] = 0.0;
349     }
350     }
351 tim 93
352 gezelter 507 //// this is NEVER called
353     if ( i >= VTK_MAX_ROTATIONS ) {
354     std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl;
355 gezelter 1879 if (n > 4) {
356     delete[] b;
357     delete[] z;
358     }
359 gezelter 507 return 0;
360     }
361 tim 76
362 gezelter 507 // sort eigenfunctions these changes do not affect accuracy
363     for (j=0; j<n-1; j++) { // boundary incorrect
364     k = j;
365     tmp = w[k];
366     for (i=j+1; i<n; i++) { // boundary incorrect, shifted already
367     if (w[i] >= tmp) { // why exchage if same?
368     k = i;
369     tmp = w[k];
370     }
371     }
372     if (k != j) {
373     w[k] = w[j];
374     w[j] = tmp;
375     for (i=0; i<n; i++) {
376     tmp = v(i, j);
377     v(i, j) = v(i, k);
378     v(i, k) = tmp;
379     }
380     }
381     }
382     // insure eigenvector consistency (i.e., Jacobi can compute vectors that
383     // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
384     // reek havoc in hyperstreamline/other stuff. We will select the most
385     // positive eigenvector.
386     int ceil_half_n = (n >> 1) + (n & 1);
387     for (j=0; j<n; j++) {
388     for (numPos=0, i=0; i<n; i++) {
389     if ( v(i, j) >= 0.0 ) {
390     numPos++;
391     }
392     }
393 tim 963 // if ( numPos < ceil(RealType(n)/RealType(2.0)) )
394 gezelter 507 if ( numPos < ceil_half_n) {
395     for (i=0; i<n; i++) {
396     v(i, j) *= -1.0;
397     }
398     }
399     }
400 tim 76
401 gezelter 507 if (n > 4) {
402     delete [] b;
403     delete [] z;
404 tim 76 }
405 gezelter 507 return 1;
406     }
407 tim 76
408    
409 tim 963 typedef SquareMatrix<RealType, 6> Mat6x6d;
410 tim 76 }
411 tim 123 #endif //MATH_SQUAREMATRIX_HPP
412 tim 76

Properties

Name Value
svn:keywords Author Id Revision Date