--- trunk/src/math/RectMatrix.hpp 2010/05/10 17:28:26 1442 +++ trunk/src/math/RectMatrix.hpp 2013/08/05 21:46:11 1924 @@ -35,8 +35,9 @@ * * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). - * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). - * [4] Vardeman & Gezelter, in progress (2009). + * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). + * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). + * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). */ /** @@ -220,7 +221,7 @@ namespace OpenMD { /** * Tests if this matrix is identical to matrix m * @return true if this matrix is equal to the matrix m, return false otherwise - * @m matrix to be compared + * @param m matrix to be compared * * @todo replace operator == by template function equal */ @@ -236,7 +237,7 @@ namespace OpenMD { /** * Tests if this matrix is not equal to matrix m * @return true if this matrix is not equal to the matrix m, return false otherwise - * @m matrix to be compared + * @param m matrix to be compared */ bool operator !=(const RectMatrix& m) { return !(*this == m); @@ -506,7 +507,7 @@ namespace OpenMD { } /** - * Return the multiplication of a matrix and a vector (m * v). + * Returns the multiplication of a matrix and a vector (m * v). * @return the multiplication of a matrix and a vector * @param m the matrix * @param v the vector @@ -518,6 +519,23 @@ namespace OpenMD { for (unsigned int i = 0; i < Row ; i++) for (unsigned int j = 0; j < Col ; j++) result[i] += m(i, j) * v[j]; + + return result; + } + + /** + * Returns the multiplication of a vector transpose and a matrix (v^T * m). + * @return the multiplication of a vector transpose and a matrix + * @param v the vector + * @param m the matrix + */ + template + inline Vector operator *(const Vector& v, const RectMatrix& m) { + Vector result; + + for (unsigned int i = 0; i < Col ; i++) + for (unsigned int j = 0; j < Row ; j++) + result[i] += v[j] * m(j, i); return result; } @@ -537,7 +555,72 @@ namespace OpenMD { return result; } + + /** + * Returns the tensor contraction (double dot product) of two rank 2 + * tensors (or Matrices) + * + * \f[ \mathbf{A} \colon \! \mathbf{B} = \sum_\alpha \sum_\beta \mathbf{A}_{\alpha \beta} B_{\alpha \beta} \f] + * + * @param t1 first tensor + * @param t2 second tensor + * @return the tensor contraction (double dot product) of t1 and t2 + */ + template + inline Real doubleDot( const RectMatrix& t1, + const RectMatrix& t2 ) { + Real tmp; + tmp = 0; + + for (unsigned int i = 0; i < Row; i++) + for (unsigned int j =0; j < Col; j++) + tmp += t1(i,j) * t2(i,j); + + return tmp; + } + + + /** + * Returns the vector (cross) product of two matrices. This + * operation is defined in: + * + * W. Smith, "Point Multipoles in the Ewald Summation (Revisited)," + * CCP5 Newsletter No 46., pp. 18-30. + * + * Equation 21 defines: + * \f[ + * V_alpha = \sum_\beta \left[ A_{\alpha+1,\beta} * B_{\alpha+2,\beta} + -A_{\alpha+2,\beta} * B_{\alpha+2,\beta} \right] + * \f] + + * where \f[\alpha+1\f] and \f[\alpha+2\f] are regarded as cyclic + * permuations of the matrix indices (i.e. for a 3x3 matrix, when + * \f[\alpha = 2\f], \f[\alpha + 1 = 3 \f], and \f[\alpha + 2 = 1 \f] ). + * + * @param t1 first matrix + * @param t2 second matrix + * @return the cross product (vector product) of t1 and t2 + */ + template + inline Vector cross( const RectMatrix& t1, + const RectMatrix& t2 ) { + Vector result; + unsigned int i1; + unsigned int i2; + + for (unsigned int i = 0; i < Row; i++) { + i1 = (i+1)%Row; + i2 = (i+2)%Row; + for (unsigned int j = 0; j < Col; j++) { + result[i] += t1(i1,j) * t2(i2,j) - t1(i2,j) * t2(i1,j); + } + } + return result; + } + + + /** * Write to an output stream */ template