ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/math/RectMatrix.hpp
(Generate patch)

Comparing trunk/src/math/RectMatrix.hpp (file contents):
Revision 1390 by gezelter, Wed Nov 25 20:02:06 2009 UTC vs.
Revision 1924 by gezelter, Mon Aug 5 21:46:11 2013 UTC

# Line 35 | Line 35
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 220 | Line 221 | namespace OpenMD {
221      /**
222       * Tests if this matrix is identical to matrix m
223       * @return true if this matrix is equal to the matrix m, return false otherwise
224 <     * @m matrix to be compared
224 >     * @param m matrix to be compared
225       *
226       * @todo replace operator == by template function equal
227       */
# Line 236 | Line 237 | namespace OpenMD {
237      /**
238       * Tests if this matrix is not equal to matrix m
239       * @return true if this matrix is not equal to the matrix m, return false otherwise
240 <     * @m matrix to be compared
240 >     * @param m matrix to be compared
241       */
242      bool operator !=(const RectMatrix<Real, Row, Col>& m) {
243        return !(*this == m);
# Line 506 | Line 507 | namespace OpenMD {
507    }
508      
509    /**
510 <   * Return the multiplication of  a matrix and a vector  (m * v).
510 >   * Returns the multiplication of  a matrix and a vector  (m * v).
511     * @return the multiplication of a matrix and a vector
512     * @param m the matrix
513     * @param v the vector
# Line 518 | Line 519 | namespace OpenMD {
519      for (unsigned int i = 0; i < Row ; i++)
520        for (unsigned int j = 0; j < Col ; j++)            
521          result[i] += m(i, j) * v[j];
522 +            
523 +    return result;                                                                
524 +  }
525 +
526 +  /**
527 +   * Returns the multiplication of a vector transpose and a matrix  (v^T * m).
528 +   * @return the multiplication of a vector transpose and a matrix
529 +   * @param v the vector
530 +   * @param m the matrix
531 +   */
532 +  template<typename Real, unsigned int Row, unsigned int Col>
533 +  inline Vector<Real, Col> operator *(const Vector<Real, Row>& v, const RectMatrix<Real, Row, Col>& m) {
534 +    Vector<Real, Row> result;
535 +    
536 +    for (unsigned int i = 0; i < Col ; i++)
537 +      for (unsigned int j = 0; j < Row ; j++)            
538 +        result[i] += v[j] * m(j, i);
539              
540      return result;                                                                
541    }
# Line 537 | Line 555 | namespace OpenMD {
555      return result;
556    }    
557  
558 +    
559 +    /**
560 +     * Returns the tensor contraction (double dot product) of two rank 2
561 +     * tensors (or Matrices)
562 +     *
563 +     * \f[ \mathbf{A} \colon \! \mathbf{B} = \sum_\alpha \sum_\beta \mathbf{A}_{\alpha \beta} B_{\alpha \beta} \f]
564 +     *
565 +     * @param t1 first tensor
566 +     * @param t2 second tensor
567 +     * @return the tensor contraction (double dot product) of t1 and t2
568 +     */
569 +  template<typename Real, unsigned int Row, unsigned int Col>
570 +  inline Real doubleDot( const RectMatrix<Real, Row, Col>& t1,
571 +                         const RectMatrix<Real, Row, Col>& t2 ) {
572 +    Real tmp;
573 +    tmp = 0;
574 +    
575 +    for (unsigned int i = 0; i < Row; i++)
576 +      for (unsigned int j =0; j < Col; j++)
577 +        tmp += t1(i,j) * t2(i,j);
578 +    
579 +    return tmp;
580 +  }
581 +  
582 +
583 +  
584    /**
585 +   * Returns the vector (cross) product of two matrices.  This
586 +   * operation is defined in:
587 +   *
588 +   * W. Smith, "Point Multipoles in the Ewald Summation (Revisited),"
589 +   * CCP5 Newsletter No 46., pp. 18-30.
590 +   *
591 +   * Equation 21 defines:
592 +   * \f[
593 +   * V_alpha = \sum_\beta \left[ A_{\alpha+1,\beta} * B_{\alpha+2,\beta}
594 +                           -A_{\alpha+2,\beta} * B_{\alpha+2,\beta} \right]
595 +   * \f]
596 +
597 +   * where \f[\alpha+1\f] and \f[\alpha+2\f] are regarded as cyclic
598 +   * permuations of the matrix indices (i.e. for a 3x3 matrix, when
599 +   * \f[\alpha = 2\f], \f[\alpha + 1 = 3 \f], and \f[\alpha + 2 = 1 \f] ).
600 +   *
601 +   * @param t1 first matrix
602 +   * @param t2 second matrix
603 +   * @return the cross product (vector product) of t1 and t2
604 +   */
605 +  template<typename Real, unsigned int Row, unsigned int Col>
606 +  inline Vector<Real, Row> cross( const RectMatrix<Real, Row, Col>& t1,
607 +                                  const RectMatrix<Real, Row, Col>& t2 ) {
608 +    Vector<Real, Row> result;
609 +    unsigned int i1;
610 +    unsigned int i2;
611 +    
612 +    for (unsigned int i = 0; i < Row; i++) {
613 +      i1 = (i+1)%Row;
614 +      i2 = (i+2)%Row;
615 +      for (unsigned int j = 0; j < Col; j++) {
616 +        result[i] += t1(i1,j) * t2(i2,j) - t1(i2,j) * t2(i1,j);
617 +      }
618 +    }    
619 +    return result;
620 +  }
621 +  
622 +  
623 +  /**
624     * Write to an output stream
625     */
626    template<typename Real,  unsigned int Row, unsigned int Col>

Comparing trunk/src/math/RectMatrix.hpp (property svn:keywords):
Revision 1390 by gezelter, Wed Nov 25 20:02:06 2009 UTC vs.
Revision 1924 by gezelter, Mon Aug 5 21:46:11 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines