41 |
|
|
42 |
|
#include <stdio.h> |
43 |
|
#include <cmath> |
44 |
< |
|
44 |
> |
#include <limits> |
45 |
|
#include "math/RealSphericalHarmonic.hpp" |
46 |
|
|
47 |
|
using namespace oopse; |
49 |
|
RealSphericalHarmonic::RealSphericalHarmonic() { |
50 |
|
} |
51 |
|
|
52 |
< |
double RealSphericalHarmonic::getValueAt(double costheta, double phi) { |
52 |
> |
RealType RealSphericalHarmonic::getValueAt(RealType costheta, RealType phi) { |
53 |
|
|
54 |
< |
double p, phase; |
54 |
> |
RealType p, phase; |
55 |
|
|
56 |
|
// associated Legendre polynomial |
57 |
|
p = LegendreP(L,M,costheta); |
58 |
|
|
59 |
|
if (functionType == RSH_SIN) { |
60 |
< |
phase = sin((double)M * phi); |
60 |
> |
phase = sin((RealType)M * phi); |
61 |
|
} else { |
62 |
< |
phase = cos((double)M * phi); |
62 |
> |
phase = cos((RealType)M * phi); |
63 |
|
} |
64 |
|
|
65 |
|
return coefficient*p*phase; |
68 |
|
|
69 |
|
//---------------------------------------------------------------------------// |
70 |
|
// |
71 |
< |
// double LegendreP (int l, int m, double x); |
71 |
> |
// RealType LegendreP (int l, int m, RealType x); |
72 |
|
// |
73 |
|
// Computes the value of the associated Legendre polynomial P_lm (x) |
74 |
|
// of order l at a given point. |
81 |
|
// value of the polynomial in x |
82 |
|
// |
83 |
|
//---------------------------------------------------------------------------// |
84 |
< |
double RealSphericalHarmonic::LegendreP (int l, int m, double x) { |
84 |
> |
RealType RealSphericalHarmonic::LegendreP (int l, int m, RealType x) { |
85 |
|
// check parameters |
86 |
|
if (m < 0 || m > l || fabs(x) > 1.0) { |
87 |
|
printf("LegendreP got a bad argument: l = %d\tm = %d\tx = %lf\n", l, m, x); |
88 |
< |
return NAN; |
88 |
> |
// return NAN; |
89 |
> |
return std::numeric_limits <RealType>:: quiet_NaN(); |
90 |
|
} |
91 |
|
|
92 |
< |
double pmm = 1.0; |
92 |
> |
RealType pmm = 1.0; |
93 |
|
if (m > 0) { |
94 |
< |
double h = sqrt((1.0-x)*(1.0+x)), |
94 |
> |
RealType h = sqrt((1.0-x)*(1.0+x)), |
95 |
|
f = 1.0; |
96 |
|
for (int i = 1; i <= m; i++) { |
97 |
|
pmm *= -f * h; |
101 |
|
if (l == m) |
102 |
|
return pmm; |
103 |
|
else { |
104 |
< |
double pmmp1 = x * (2 * m + 1) * pmm; |
104 |
> |
RealType pmmp1 = x * (2 * m + 1) * pmm; |
105 |
|
if (l == (m+1)) |
106 |
|
return pmmp1; |
107 |
|
else { |
108 |
< |
double pll = 0.0; |
108 |
> |
RealType pll = 0.0; |
109 |
|
for (int ll = m+2; ll <= l; ll++) { |
110 |
|
pll = (x * (2 * ll - 1) * pmmp1 - (ll + m - 1) * pmm) / (ll - m); |
111 |
|
pmm = pmmp1; |