ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/math/Quaternion.hpp
Revision: 1687
Committed: Sat Mar 10 16:00:24 2012 UTC (13 years, 1 month ago) by gezelter
File size: 20563 byte(s)
Log Message:
Fixes for LLVM compilation
Bug fix for Gay Berne potential with switching functions

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 /**
44 * @file Quaternion.hpp
45 * @author Teng Lin
46 * @date 10/11/2004
47 * @version 1.0
48 */
49
50 #ifndef MATH_QUATERNION_HPP
51 #define MATH_QUATERNION_HPP
52
53 #include "math/Vector3.hpp"
54 #include "math/SquareMatrix.hpp"
55 #define ISZERO(a,eps) ( (a)>-(eps) && (a)<(eps) )
56 const RealType tiny=1.0e-6;
57
58 namespace OpenMD{
59
60 /**
61 * @class Quaternion Quaternion.hpp "math/Quaternion.hpp"
62 * Quaternion is a sort of a higher-level complex number.
63 * It is defined as Q = w + x*i + y*j + z*k,
64 * where w, x, y, and z are numbers of type T (e.g. RealType), and
65 * i*i = -1; j*j = -1; k*k = -1;
66 * i*j = k; j*k = i; k*i = j;
67 */
68 template<typename Real>
69 class Quaternion : public Vector<Real, 4> {
70
71 public:
72 Quaternion() : Vector<Real, 4>() {}
73
74 /** Constructs and initializes a Quaternion from w, x, y, z values */
75 Quaternion(Real w, Real x, Real y, Real z) {
76 this->data_[0] = w;
77 this->data_[1] = x;
78 this->data_[2] = y;
79 this->data_[3] = z;
80 }
81
82 /** Constructs and initializes a Quaternion from a Vector<Real,4> */
83 Quaternion(const Vector<Real,4>& v)
84 : Vector<Real, 4>(v){
85 }
86
87 /** copy assignment */
88 Quaternion& operator =(const Vector<Real, 4>& v){
89 if (this == & v)
90 return *this;
91
92 Vector<Real, 4>::operator=(v);
93
94 return *this;
95 }
96
97 /**
98 * Returns the value of the first element of this quaternion.
99 * @return the value of the first element of this quaternion
100 */
101 Real w() const {
102 return this->data_[0];
103 }
104
105 /**
106 * Returns the reference of the first element of this quaternion.
107 * @return the reference of the first element of this quaternion
108 */
109 Real& w() {
110 return this->data_[0];
111 }
112
113 /**
114 * Returns the value of the first element of this quaternion.
115 * @return the value of the first element of this quaternion
116 */
117 Real x() const {
118 return this->data_[1];
119 }
120
121 /**
122 * Returns the reference of the second element of this quaternion.
123 * @return the reference of the second element of this quaternion
124 */
125 Real& x() {
126 return this->data_[1];
127 }
128
129 /**
130 * Returns the value of the thirf element of this quaternion.
131 * @return the value of the third element of this quaternion
132 */
133 Real y() const {
134 return this->data_[2];
135 }
136
137 /**
138 * Returns the reference of the third element of this quaternion.
139 * @return the reference of the third element of this quaternion
140 */
141 Real& y() {
142 return this->data_[2];
143 }
144
145 /**
146 * Returns the value of the fourth element of this quaternion.
147 * @return the value of the fourth element of this quaternion
148 */
149 Real z() const {
150 return this->data_[3];
151 }
152 /**
153 * Returns the reference of the fourth element of this quaternion.
154 * @return the reference of the fourth element of this quaternion
155 */
156 Real& z() {
157 return this->data_[3];
158 }
159
160 /**
161 * Tests if this quaternion is equal to other quaternion
162 * @return true if equal, otherwise return false
163 * @param q quaternion to be compared
164 */
165 inline bool operator ==(const Quaternion<Real>& q) {
166
167 for (unsigned int i = 0; i < 4; i ++) {
168 if (!equal(this->data_[i], q[i])) {
169 return false;
170 }
171 }
172
173 return true;
174 }
175
176 /**
177 * Returns the inverse of this quaternion
178 * @return inverse
179 * @note since quaternion is a complex number, the inverse of quaternion
180 * q = w + xi + yj+ zk is inv_q = (w -xi - yj - zk)/(|q|^2)
181 */
182 Quaternion<Real> inverse() {
183 Quaternion<Real> q;
184 Real d = this->lengthSquare();
185
186 q.w() = w() / d;
187 q.x() = -x() / d;
188 q.y() = -y() / d;
189 q.z() = -z() / d;
190
191 return q;
192 }
193
194 /**
195 * Sets the value to the multiplication of itself and another quaternion
196 * @param q the other quaternion
197 */
198 void mul(const Quaternion<Real>& q) {
199 Quaternion<Real> tmp(*this);
200
201 this->data_[0] = (tmp[0]*q[0]) -(tmp[1]*q[1]) - (tmp[2]*q[2]) - (tmp[3]*q[3]);
202 this->data_[1] = (tmp[0]*q[1]) + (tmp[1]*q[0]) + (tmp[2]*q[3]) - (tmp[3]*q[2]);
203 this->data_[2] = (tmp[0]*q[2]) + (tmp[2]*q[0]) + (tmp[3]*q[1]) - (tmp[1]*q[3]);
204 this->data_[3] = (tmp[0]*q[3]) + (tmp[3]*q[0]) + (tmp[1]*q[2]) - (tmp[2]*q[1]);
205 }
206
207 void mul(const Real& s) {
208 this->data_[0] *= s;
209 this->data_[1] *= s;
210 this->data_[2] *= s;
211 this->data_[3] *= s;
212 }
213
214 /** Set the value of this quaternion to the division of itself by another quaternion */
215 void div(Quaternion<Real>& q) {
216 mul(q.inverse());
217 }
218
219 void div(const Real& s) {
220 this->data_[0] /= s;
221 this->data_[1] /= s;
222 this->data_[2] /= s;
223 this->data_[3] /= s;
224 }
225
226 Quaternion<Real>& operator *=(const Quaternion<Real>& q) {
227 mul(q);
228 return *this;
229 }
230
231 Quaternion<Real>& operator *=(const Real& s) {
232 mul(s);
233 return *this;
234 }
235
236 Quaternion<Real>& operator /=(Quaternion<Real>& q) {
237 *this *= q.inverse();
238 return *this;
239 }
240
241 Quaternion<Real>& operator /=(const Real& s) {
242 div(s);
243 return *this;
244 }
245 /**
246 * Returns the conjugate quaternion of this quaternion
247 * @return the conjugate quaternion of this quaternion
248 */
249 Quaternion<Real> conjugate() const {
250 return Quaternion<Real>(w(), -x(), -y(), -z());
251 }
252
253
254 /**
255 return rotation angle from -PI to PI
256 */
257 inline Real get_rotation_angle() const{
258 if( w() < (Real)0.0 )
259 return 2.0*atan2(-sqrt( x()*x() + y()*y() + z()*z() ), -w() );
260 else
261 return 2.0*atan2( sqrt( x()*x() + y()*y() + z()*z() ), w() );
262 }
263
264 /**
265 create a unit quaternion from axis angle representation
266 */
267 Quaternion<Real> fromAxisAngle(const Vector3<Real>& axis,
268 const Real& angle){
269 Vector3<Real> v(axis);
270 v.normalize();
271 Real half_angle = angle*0.5;
272 Real sin_a = sin(half_angle);
273 *this = Quaternion<Real>(cos(half_angle),
274 v.x()*sin_a,
275 v.y()*sin_a,
276 v.z()*sin_a);
277 return *this;
278 }
279
280 /**
281 convert a quaternion to axis angle representation,
282 preserve the axis direction and angle from -PI to +PI
283 */
284 void toAxisAngle(Vector3<Real>& axis, Real& angle)const {
285 Real vl = sqrt( x()*x() + y()*y() + z()*z() );
286 if( vl > tiny ) {
287 Real ivl = 1.0/vl;
288 axis.x() = x() * ivl;
289 axis.y() = y() * ivl;
290 axis.z() = z() * ivl;
291
292 if( w() < 0 )
293 angle = 2.0*atan2(-vl, -w()); //-PI,0
294 else
295 angle = 2.0*atan2( vl, w()); //0,PI
296 } else {
297 axis = Vector3<Real>(0.0,0.0,0.0);
298 angle = 0.0;
299 }
300 }
301
302 /**
303 shortest arc quaternion rotate one vector to another by shortest path.
304 create rotation from -> to, for any length vectors.
305 */
306 Quaternion<Real> fromShortestArc(const Vector3d& from,
307 const Vector3d& to ) {
308
309 Vector3d c( cross(from,to) );
310 *this = Quaternion<Real>(dot(from,to),
311 c.x(),
312 c.y(),
313 c.z());
314
315 this->normalize(); // if "from" or "to" not unit, normalize quat
316 w() += 1.0f; // reducing angle to halfangle
317 if( w() <= 1e-6 ) { // angle close to PI
318 if( ( from.z()*from.z() ) > ( from.x()*from.x() ) ) {
319 this->data_[0] = w();
320 this->data_[1] = 0.0; //cross(from , Vector3d(1,0,0))
321 this->data_[2] = from.z();
322 this->data_[3] = -from.y();
323 } else {
324 this->data_[0] = w();
325 this->data_[1] = from.y(); //cross(from, Vector3d(0,0,1))
326 this->data_[2] = -from.x();
327 this->data_[3] = 0.0;
328 }
329 }
330 this->normalize();
331 }
332
333 Real ComputeTwist(const Quaternion& q) {
334 return (Real)2.0 * atan2(q.z(), q.w());
335 }
336
337 void RemoveTwist(Quaternion& q) {
338 Real t = ComputeTwist(q);
339 Quaternion rt = fromAxisAngle(V3Z, t);
340
341 q *= rt.inverse();
342 }
343
344 void getTwistSwingAxisAngle(Real& twistAngle, Real& swingAngle,
345 Vector3<Real>& swingAxis) {
346
347 twistAngle = (Real)2.0 * atan2(z(), w());
348 Quaternion rt, rs;
349 rt.fromAxisAngle(V3Z, twistAngle);
350 rs = *this * rt.inverse();
351
352 Real vl = sqrt( rs.x()*rs.x() + rs.y()*rs.y() + rs.z()*rs.z() );
353 if( vl > tiny ) {
354 Real ivl = 1.0 / vl;
355 swingAxis.x() = rs.x() * ivl;
356 swingAxis.y() = rs.y() * ivl;
357 swingAxis.z() = rs.z() * ivl;
358
359 if( rs.w() < 0.0 )
360 swingAngle = 2.0*atan2(-vl, -rs.w()); //-PI,0
361 else
362 swingAngle = 2.0*atan2( vl, rs.w()); //0,PI
363 } else {
364 swingAxis = Vector3<Real>(1.0,0.0,0.0);
365 swingAngle = 0.0;
366 }
367 }
368
369
370 Vector3<Real> rotate(const Vector3<Real>& v) {
371
372 Quaternion<Real> q(v.x() * w() + v.z() * y() - v.y() * z(),
373 v.y() * w() + v.x() * z() - v.z() * x(),
374 v.z() * w() + v.y() * x() - v.x() * y(),
375 v.x() * x() + v.y() * y() + v.z() * z());
376
377 return Vector3<Real>(w()*q.x() + x()*q.w() + y()*q.z() - z()*q.y(),
378 w()*q.y() + y()*q.w() + z()*q.x() - x()*q.z(),
379 w()*q.z() + z()*q.w() + x()*q.y() - y()*q.x())*
380 ( 1.0/this->lengthSquare() );
381 }
382
383 Quaternion<Real>& align (const Vector3<Real>& V1,
384 const Vector3<Real>& V2) {
385
386 // If V1 and V2 are not parallel, the axis of rotation is the unit-length
387 // vector U = Cross(V1,V2)/Length(Cross(V1,V2)). The angle of rotation,
388 // A, is the angle between V1 and V2. The quaternion for the rotation is
389 // q = cos(A/2) + sin(A/2)*(ux*i+uy*j+uz*k) where U = (ux,uy,uz).
390 //
391 // (1) Rather than extract A = acos(Dot(V1,V2)), multiply by 1/2, then
392 // compute sin(A/2) and cos(A/2), we reduce the computational costs
393 // by computing the bisector B = (V1+V2)/Length(V1+V2), so cos(A/2) =
394 // Dot(V1,B).
395 //
396 // (2) The rotation axis is U = Cross(V1,B)/Length(Cross(V1,B)), but
397 // Length(Cross(V1,B)) = Length(V1)*Length(B)*sin(A/2) = sin(A/2), in
398 // which case sin(A/2)*(ux*i+uy*j+uz*k) = (cx*i+cy*j+cz*k) where
399 // C = Cross(V1,B).
400 //
401 // If V1 = V2, then B = V1, cos(A/2) = 1, and U = (0,0,0). If V1 = -V2,
402 // then B = 0. This can happen even if V1 is approximately -V2 using
403 // floating point arithmetic, since Vector3::Normalize checks for
404 // closeness to zero and returns the zero vector accordingly. The test
405 // for exactly zero is usually not recommend for floating point
406 // arithmetic, but the implementation of Vector3::Normalize guarantees
407 // the comparison is robust. In this case, the A = pi and any axis
408 // perpendicular to V1 may be used as the rotation axis.
409
410 Vector3<Real> Bisector = V1 + V2;
411 Bisector.normalize();
412
413 Real CosHalfAngle = dot(V1,Bisector);
414
415 this->data_[0] = CosHalfAngle;
416
417 if (CosHalfAngle != (Real)0.0) {
418 Vector3<Real> Cross = cross(V1, Bisector);
419 this->data_[1] = Cross.x();
420 this->data_[2] = Cross.y();
421 this->data_[3] = Cross.z();
422 } else {
423 Real InvLength;
424 if (fabs(V1[0]) >= fabs(V1[1])) {
425 // V1.x or V1.z is the largest magnitude component
426 InvLength = (Real)1.0/sqrt(V1[0]*V1[0] + V1[2]*V1[2]);
427
428 this->data_[1] = -V1[2]*InvLength;
429 this->data_[2] = (Real)0.0;
430 this->data_[3] = +V1[0]*InvLength;
431 } else {
432 // V1.y or V1.z is the largest magnitude component
433 InvLength = (Real)1.0 / sqrt(V1[1]*V1[1] + V1[2]*V1[2]);
434
435 this->data_[1] = (Real)0.0;
436 this->data_[2] = +V1[2]*InvLength;
437 this->data_[3] = -V1[1]*InvLength;
438 }
439 }
440 return *this;
441 }
442
443 void toTwistSwing ( Real& tw, Real& sx, Real& sy ) {
444
445 // First test if the swing is in the singularity:
446
447 if ( ISZERO(z(),tiny) && ISZERO(w(),tiny) ) { sx=sy=M_PI; tw=0; return; }
448
449 // Decompose into twist-swing by solving the equation:
450 //
451 // Qtwist(t*2) * Qswing(s*2) = q
452 //
453 // note: (x,y) is the normalized swing axis (x*x+y*y=1)
454 //
455 // ( Ct 0 0 St ) * ( Cs xSs ySs 0 ) = ( qw qx qy qz )
456 // ( CtCs xSsCt-yStSs xStSs+ySsCt StCs ) = ( qw qx qy qz ) (1)
457 // From (1): CtCs / StCs = qw/qz => Ct/St = qw/qz => tan(t) = qz/qw (2)
458 //
459 // The swing rotation/2 s comes from:
460 //
461 // From (1): (CtCs)^2 + (StCs)^2 = qw^2 + qz^2 =>
462 // Cs = sqrt ( qw^2 + qz^2 ) (3)
463 //
464 // From (1): (xSsCt-yStSs)^2 + (xStSs+ySsCt)^2 = qx^2 + qy^2 =>
465 // Ss = sqrt ( qx^2 + qy^2 ) (4)
466 // From (1): |SsCt -StSs| |x| = |qx|
467 // |StSs +SsCt| |y| |qy| (5)
468
469 Real qw, qx, qy, qz;
470
471 if ( w()<0 ) {
472 qw=-w();
473 qx=-x();
474 qy=-y();
475 qz=-z();
476 } else {
477 qw=w();
478 qx=x();
479 qy=y();
480 qz=z();
481 }
482
483 Real t = atan2 ( qz, qw ); // from (2)
484 Real s = atan2( sqrt(qx*qx+qy*qy), sqrt(qz*qz+qw*qw) ); // from (3)
485 // and (4)
486
487 Real x=0.0, y=0.0, sins=sin(s);
488
489 if ( !ISZERO(sins,tiny) ) {
490 Real sint = sin(t);
491 Real cost = cos(t);
492
493 // by solving the linear system in (5):
494 y = (-qx*sint + qy*cost)/sins;
495 x = ( qx*cost + qy*sint)/sins;
496 }
497
498 tw = (Real)2.0*t;
499 sx = (Real)2.0*x*s;
500 sy = (Real)2.0*y*s;
501 }
502
503 void toSwingTwist(Real& sx, Real& sy, Real& tw ) {
504
505 // Decompose q into swing-twist using a similar development as
506 // in function toTwistSwing
507
508 if ( ISZERO(z(),tiny) && ISZERO(w(),tiny) ) { sx=sy=M_PI; tw=0; }
509
510 Real qw, qx, qy, qz;
511 if ( w() < 0 ){
512 qw=-w();
513 qx=-x();
514 qy=-y();
515 qz=-z();
516 } else {
517 qw=w();
518 qx=x();
519 qy=y();
520 qz=z();
521 }
522
523 // Get the twist t:
524 Real t = 2.0 * atan2(qz,qw);
525
526 Real bet = atan2( sqrt(qx*qx+qy*qy), sqrt(qz*qz+qw*qw) );
527 Real gam = t/2.0;
528 Real sinc = ISZERO(bet,tiny)? 1.0 : sin(bet)/bet;
529 Real singam = sin(gam);
530 Real cosgam = cos(gam);
531
532 sx = Real( (2.0/sinc) * (cosgam*qx - singam*qy) );
533 sy = Real( (2.0/sinc) * (singam*qx + cosgam*qy) );
534 tw = Real( t );
535 }
536
537
538
539 /**
540 * Returns the corresponding rotation matrix (3x3)
541 * @return a 3x3 rotation matrix
542 */
543 SquareMatrix<Real, 3> toRotationMatrix3() {
544 SquareMatrix<Real, 3> rotMat3;
545
546 Real w2;
547 Real x2;
548 Real y2;
549 Real z2;
550
551 if (!this->isNormalized())
552 this->normalize();
553
554 w2 = w() * w();
555 x2 = x() * x();
556 y2 = y() * y();
557 z2 = z() * z();
558
559 rotMat3(0, 0) = w2 + x2 - y2 - z2;
560 rotMat3(0, 1) = 2.0 * ( x() * y() + w() * z() );
561 rotMat3(0, 2) = 2.0 * ( x() * z() - w() * y() );
562
563 rotMat3(1, 0) = 2.0 * ( x() * y() - w() * z() );
564 rotMat3(1, 1) = w2 - x2 + y2 - z2;
565 rotMat3(1, 2) = 2.0 * ( y() * z() + w() * x() );
566
567 rotMat3(2, 0) = 2.0 * ( x() * z() + w() * y() );
568 rotMat3(2, 1) = 2.0 * ( y() * z() - w() * x() );
569 rotMat3(2, 2) = w2 - x2 -y2 +z2;
570
571 return rotMat3;
572 }
573
574 };//end Quaternion
575
576
577 /**
578 * Returns the vaule of scalar multiplication of this quaterion q (q * s).
579 * @return the vaule of scalar multiplication of this vector
580 * @param q the source quaternion
581 * @param s the scalar value
582 */
583 template<typename Real, unsigned int Dim>
584 Quaternion<Real> operator * ( const Quaternion<Real>& q, Real s) {
585 Quaternion<Real> result(q);
586 result.mul(s);
587 return result;
588 }
589
590 /**
591 * Returns the vaule of scalar multiplication of this quaterion q (q * s).
592 * @return the vaule of scalar multiplication of this vector
593 * @param s the scalar value
594 * @param q the source quaternion
595 */
596 template<typename Real, unsigned int Dim>
597 Quaternion<Real> operator * ( const Real& s, const Quaternion<Real>& q ) {
598 Quaternion<Real> result(q);
599 result.mul(s);
600 return result;
601 }
602
603 /**
604 * Returns the multiplication of two quaternion
605 * @return the multiplication of two quaternion
606 * @param q1 the first quaternion
607 * @param q2 the second quaternion
608 */
609 template<typename Real>
610 inline Quaternion<Real> operator *(const Quaternion<Real>& q1, const Quaternion<Real>& q2) {
611 Quaternion<Real> result(q1);
612 result *= q2;
613 return result;
614 }
615
616 /**
617 * Returns the division of two quaternion
618 * @param q1 divisor
619 * @param q2 dividen
620 */
621
622 template<typename Real>
623 inline Quaternion<Real> operator /( Quaternion<Real>& q1, Quaternion<Real>& q2) {
624 return q1 * q2.inverse();
625 }
626
627 /**
628 * Returns the value of the division of a scalar by a quaternion
629 * @return the value of the division of a scalar by a quaternion
630 * @param s scalar
631 * @param q quaternion
632 * @note for a quaternion q, 1/q = q.inverse()
633 */
634 template<typename Real>
635 Quaternion<Real> operator /(const Real& s, Quaternion<Real>& q) {
636
637 Quaternion<Real> x;
638 x = q.inverse();
639 x *= s;
640 return x;
641 }
642
643 template <class T>
644 inline bool operator==(const Quaternion<T>& lhs, const Quaternion<T>& rhs) {
645 return equal(lhs[0] ,rhs[0]) && equal(lhs[1] , rhs[1]) && equal(lhs[2], rhs[2]) && equal(lhs[3], rhs[3]);
646 }
647
648 typedef Quaternion<RealType> Quat4d;
649 }
650 #endif //MATH_QUATERNION_HPP

Properties

Name Value
svn:executable *
svn:keywords Author Id Revision Date