1 |
tim |
92 |
/* |
2 |
|
|
* Copyright (C) 2000-2004 Object Oriented Parallel Simulation Engine (OOPSE) project |
3 |
|
|
* |
4 |
|
|
* Contact: oopse@oopse.org |
5 |
|
|
* |
6 |
|
|
* This program is free software; you can redistribute it and/or |
7 |
|
|
* modify it under the terms of the GNU Lesser General Public License |
8 |
|
|
* as published by the Free Software Foundation; either version 2.1 |
9 |
|
|
* of the License, or (at your option) any later version. |
10 |
|
|
* All we ask is that proper credit is given for our work, which includes |
11 |
|
|
* - but is not limited to - adding the above copyright notice to the beginning |
12 |
|
|
* of your source code files, and to any copyright notice that you may distribute |
13 |
|
|
* with programs based on this work. |
14 |
|
|
* |
15 |
|
|
* This program is distributed in the hope that it will be useful, |
16 |
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
17 |
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
18 |
|
|
* GNU Lesser General Public License for more details. |
19 |
|
|
* |
20 |
|
|
* You should have received a copy of the GNU Lesser General Public License |
21 |
|
|
* along with this program; if not, write to the Free Software |
22 |
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
23 |
|
|
* |
24 |
|
|
*/ |
25 |
|
|
|
26 |
|
|
/** |
27 |
|
|
* @file Quaternion.hpp |
28 |
|
|
* @author Teng Lin |
29 |
|
|
* @date 10/11/2004 |
30 |
|
|
* @version 1.0 |
31 |
|
|
*/ |
32 |
|
|
|
33 |
|
|
#ifndef MATH_QUATERNION_HPP |
34 |
|
|
#define MATH_QUATERNION_HPP |
35 |
|
|
|
36 |
tim |
93 |
#include "math/Vector.hpp" |
37 |
|
|
|
38 |
tim |
92 |
namespace oopse{ |
39 |
|
|
|
40 |
|
|
/** |
41 |
|
|
* @class Quaternion Quaternion.hpp "math/Quaternion.hpp" |
42 |
tim |
93 |
* Quaternion is a sort of a higher-level complex number. |
43 |
|
|
* It is defined as Q = w + x*i + y*j + z*k, |
44 |
|
|
* where w, x, y, and z are numbers of type T (e.g. double), and |
45 |
|
|
* i*i = -1; j*j = -1; k*k = -1; |
46 |
|
|
* i*j = k; j*k = i; k*i = j; |
47 |
tim |
92 |
*/ |
48 |
|
|
template<typename Real> |
49 |
|
|
class Quaternion : public Vector<Real, 4> { |
50 |
tim |
93 |
public: |
51 |
|
|
Quaternion(); |
52 |
tim |
92 |
|
53 |
tim |
93 |
/** Constructs and initializes a Quaternion from w, x, y, z values */ |
54 |
|
|
Quaternion(Real w, Real x, Real y, Real z) { |
55 |
|
|
data_[0] = w; |
56 |
|
|
data_[1] = x; |
57 |
|
|
data_[2] = y; |
58 |
|
|
data_[3] = z; |
59 |
|
|
} |
60 |
|
|
|
61 |
|
|
/** |
62 |
|
|
* |
63 |
|
|
*/ |
64 |
|
|
Quaternion(const Vector<Real,4>& v) |
65 |
|
|
: Vector<Real, 4>(v){ |
66 |
|
|
} |
67 |
tim |
92 |
|
68 |
tim |
93 |
/** */ |
69 |
|
|
Quaternion& operator =(const Vector<Real, 4>& v){ |
70 |
|
|
if (this == & v) |
71 |
|
|
return *this; |
72 |
|
|
|
73 |
|
|
Vector<Real, 4>::operator=(v); |
74 |
|
|
|
75 |
|
|
return *this; |
76 |
|
|
} |
77 |
|
|
|
78 |
|
|
/** |
79 |
|
|
* Returns the value of the first element of this quaternion. |
80 |
|
|
* @return the value of the first element of this quaternion |
81 |
|
|
*/ |
82 |
|
|
Real w() const { |
83 |
|
|
return data_[0]; |
84 |
|
|
} |
85 |
|
|
|
86 |
|
|
/** |
87 |
|
|
* Returns the reference of the first element of this quaternion. |
88 |
|
|
* @return the reference of the first element of this quaternion |
89 |
|
|
*/ |
90 |
|
|
Real& w() { |
91 |
|
|
return data_[0]; |
92 |
|
|
} |
93 |
|
|
|
94 |
|
|
/** |
95 |
|
|
* Returns the value of the first element of this quaternion. |
96 |
|
|
* @return the value of the first element of this quaternion |
97 |
|
|
*/ |
98 |
|
|
Real x() const { |
99 |
|
|
return data_[1]; |
100 |
|
|
} |
101 |
|
|
|
102 |
|
|
/** |
103 |
|
|
* Returns the reference of the second element of this quaternion. |
104 |
|
|
* @return the reference of the second element of this quaternion |
105 |
|
|
*/ |
106 |
|
|
Real& x() { |
107 |
|
|
return data_[1]; |
108 |
|
|
} |
109 |
|
|
|
110 |
|
|
/** |
111 |
|
|
* Returns the value of the thirf element of this quaternion. |
112 |
|
|
* @return the value of the third element of this quaternion |
113 |
|
|
*/ |
114 |
|
|
Real y() const { |
115 |
|
|
return data_[2]; |
116 |
|
|
} |
117 |
|
|
|
118 |
|
|
/** |
119 |
|
|
* Returns the reference of the third element of this quaternion. |
120 |
|
|
* @return the reference of the third element of this quaternion |
121 |
|
|
*/ |
122 |
|
|
Real& y() { |
123 |
|
|
return data_[2]; |
124 |
|
|
} |
125 |
|
|
|
126 |
|
|
/** |
127 |
|
|
* Returns the value of the fourth element of this quaternion. |
128 |
|
|
* @return the value of the fourth element of this quaternion |
129 |
|
|
*/ |
130 |
|
|
Real z() const { |
131 |
|
|
return data_[3]; |
132 |
|
|
} |
133 |
|
|
/** |
134 |
|
|
* Returns the reference of the fourth element of this quaternion. |
135 |
|
|
* @return the reference of the fourth element of this quaternion |
136 |
|
|
*/ |
137 |
|
|
Real& z() { |
138 |
|
|
return data_[3]; |
139 |
|
|
} |
140 |
|
|
|
141 |
|
|
/** |
142 |
|
|
* Returns the inverse of this quaternion |
143 |
|
|
* @return inverse |
144 |
|
|
* @note since quaternion is a complex number, the inverse of quaternion |
145 |
|
|
* q = w + xi + yj+ zk is inv_q = (w -xi - yj - zk)/(|q|^2) |
146 |
|
|
*/ |
147 |
|
|
Quaternion<Real> inverse(){ |
148 |
|
|
Quaternion<Real> q; |
149 |
|
|
Real d = this->lengthSquared(); |
150 |
|
|
|
151 |
|
|
q.w() = w() / d; |
152 |
|
|
q.x() = -x() / d; |
153 |
|
|
q.y() = -y() / d; |
154 |
|
|
q.z() = -z() / d; |
155 |
|
|
|
156 |
|
|
return q; |
157 |
|
|
} |
158 |
|
|
|
159 |
|
|
/** |
160 |
|
|
* Sets the value to the multiplication of itself and another quaternion |
161 |
|
|
* @param q the other quaternion |
162 |
|
|
*/ |
163 |
|
|
void mul(const Quaternion<Real>& q) { |
164 |
|
|
|
165 |
|
|
Real a0( (z() - y()) * (q.y() - q.z()) ); |
166 |
|
|
Real a1( (w() + x()) * (q.w() + q.x()) ); |
167 |
|
|
Real a2( (w() - x()) * (q.y() + q.z()) ); |
168 |
|
|
Real a3( (y() + z()) * (q.w() - q.x()) ); |
169 |
|
|
Real b0( -(x() - z()) * (q.x() - q.y()) ); |
170 |
|
|
Real b1( -(x() + z()) * (q.x() + q.y()) ); |
171 |
|
|
Real b2( (w() + y()) * (q.w() - q.z()) ); |
172 |
|
|
Real b3( (w() - y()) * (q.w() + q.z()) ); |
173 |
|
|
|
174 |
|
|
data_[0] = a0 + 0.5*(b0 + b1 + b2 + b3),; |
175 |
|
|
data_[1] = a1 + 0.5*(b0 + b1 - b2 - b3); |
176 |
|
|
data_[2] = a2 + 0.5*(b0 - b1 + b2 - b3), |
177 |
|
|
data_[3] = a3 + 0.5*(b0 - b1 - b2 + b3) ); |
178 |
|
|
} |
179 |
|
|
|
180 |
|
|
|
181 |
|
|
/** Set the value of this quaternion to the division of itself by another quaternion */ |
182 |
|
|
void div(const Quaternion<Real>& q) { |
183 |
|
|
mul(q.inverse()); |
184 |
|
|
} |
185 |
|
|
|
186 |
|
|
Quaternion<Real>& operator *=(const Quaternion<Real>& q) { |
187 |
|
|
mul(q); |
188 |
|
|
return *this; |
189 |
|
|
} |
190 |
|
|
|
191 |
|
|
Quaternion<Real>& operator /=(const Quaternion<Real>& q) { |
192 |
|
|
mul(q.inverse()); |
193 |
|
|
return *this; |
194 |
|
|
} |
195 |
|
|
|
196 |
|
|
/** |
197 |
|
|
* Returns the conjugate quaternion of this quaternion |
198 |
|
|
* @return the conjugate quaternion of this quaternion |
199 |
|
|
*/ |
200 |
|
|
Quaternion<Real> conjugate() { |
201 |
|
|
return Quaternion<Real>(w(), -x(), -y(), -z()); |
202 |
|
|
} |
203 |
|
|
|
204 |
|
|
/** |
205 |
|
|
* Returns the corresponding rotation matrix (3x3) |
206 |
|
|
* @return a 3x3 rotation matrix |
207 |
|
|
*/ |
208 |
tim |
99 |
SquareMatrix<Real, 3> toRotationMatrix3() { |
209 |
|
|
SquareMatrix<Real, 3> rotMat3; |
210 |
tim |
93 |
|
211 |
|
|
Real w2; |
212 |
|
|
Real x2; |
213 |
|
|
Real y2; |
214 |
|
|
Real z2; |
215 |
|
|
|
216 |
|
|
if (!isNormalized()) |
217 |
|
|
normalize(); |
218 |
|
|
|
219 |
|
|
w2 = w() * w(); |
220 |
|
|
x2 = x() * x(); |
221 |
|
|
y2 = y() * y(); |
222 |
|
|
z2 = z() * z(); |
223 |
|
|
|
224 |
|
|
rotMat3(0, 0) = w2 + x2 - y2 - z2; |
225 |
|
|
rotMat3(0, 1) = 2.0 * ( x() * y() + w() * z() ); |
226 |
|
|
rotMat3(0, 2) = 2.0 * ( x() * z() - w() * y() ); |
227 |
|
|
|
228 |
|
|
rotMat3(1, 0) = 2.0 * ( x() * y() - w() * z() ); |
229 |
|
|
rotMat3(1, 1) = w2 - x2 + y2 - z2; |
230 |
|
|
rotMat3(1, 2) = 2.0 * ( y() * z() + w() * x() ); |
231 |
|
|
|
232 |
|
|
rotMat3(2, 0) = 2.0 * ( x() * z() + w() * y() ); |
233 |
|
|
rotMat3(2, 1) = 2.0 * ( y() * z() - w() * x() ); |
234 |
|
|
rotMat3(2, 2) = w2 - x2 -y2 +z2; |
235 |
|
|
} |
236 |
|
|
|
237 |
|
|
};//end Quaternion |
238 |
|
|
|
239 |
|
|
/** |
240 |
|
|
* Returns the multiplication of two quaternion |
241 |
|
|
* @return the multiplication of two quaternion |
242 |
|
|
* @param q1 the first quaternion |
243 |
|
|
* @param q2 the second quaternion |
244 |
|
|
*/ |
245 |
|
|
template<typename Real> |
246 |
|
|
inline Quaternion<Real> operator *(const Quaternion<Real>& q1, const Quaternion<Real>& q2) { |
247 |
|
|
Quaternion<Real> result(q1); |
248 |
|
|
result *= q2; |
249 |
|
|
return result; |
250 |
|
|
} |
251 |
|
|
|
252 |
|
|
/** |
253 |
|
|
* Returns the division of two quaternion |
254 |
|
|
* @param q1 divisor |
255 |
|
|
* @param q2 dividen |
256 |
|
|
*/ |
257 |
|
|
|
258 |
|
|
template<typename Real> |
259 |
|
|
inline Quaternion<Real> operator /(const Quaternion<Real>& q1, const Quaternion<Real>& q2) { |
260 |
|
|
return q1 * q2.inverse(); |
261 |
|
|
} |
262 |
|
|
|
263 |
|
|
/** |
264 |
|
|
* Returns the value of the division of a scalar by a quaternion |
265 |
|
|
* @return the value of the division of a scalar by a quaternion |
266 |
|
|
* @param s scalar |
267 |
|
|
* @param q quaternion |
268 |
|
|
* @note for a quaternion q, 1/q = q.inverse() |
269 |
|
|
*/ |
270 |
|
|
template<typename Real> |
271 |
tim |
99 |
Quaternion<Real> operator /(const Real& s, const Quaternion<Real>& q) { |
272 |
tim |
93 |
|
273 |
|
|
Quaternion<Real> x = q.inv(); |
274 |
|
|
return x * s; |
275 |
|
|
} |
276 |
|
|
|
277 |
|
|
typedef Quaternion<double> Quat4d; |
278 |
tim |
92 |
} |
279 |
|
|
#endif //MATH_QUATERNION_HPP |