ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/math/Polynomial.hpp
Revision: 1290
Committed: Wed Sep 10 19:51:45 2008 UTC (16 years, 7 months ago) by cli2
File size: 11114 byte(s)
Log Message:
Inversion fixes and amber mostly working

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 */
41
42 /**
43 * @file Polynomial.hpp
44 * @author teng lin
45 * @date 11/16/2004
46 * @version 1.0
47 */
48
49 #ifndef MATH_POLYNOMIAL_HPP
50 #define MATH_POLYNOMIAL_HPP
51
52 #include <iostream>
53 #include <list>
54 #include <map>
55 #include <utility>
56 #include "config.h"
57 namespace oopse {
58
59 template<typename ElemType> ElemType pow(ElemType x, int N) {
60 ElemType result(1);
61
62 for (int i = 0; i < N; ++i) {
63 result *= x;
64 }
65
66 return result;
67 }
68
69 /**
70 * @class Polynomial Polynomial.hpp "math/Polynomial.hpp"
71 * A generic Polynomial class
72 */
73 template<typename ElemType>
74 class Polynomial {
75
76 public:
77 typedef Polynomial<ElemType> PolynomialType;
78 typedef int ExponentType;
79 typedef ElemType CoefficientType;
80 typedef std::map<ExponentType, CoefficientType> PolynomialPairMap;
81 typedef typename PolynomialPairMap::iterator iterator;
82 typedef typename PolynomialPairMap::const_iterator const_iterator;
83
84 Polynomial() {}
85 Polynomial(ElemType v) {setCoefficient(0, v);}
86 /**
87 * Calculates the value of this Polynomial evaluated at the given x value.
88 * @return The value of this Polynomial evaluates at the given x value
89 * @param x the value of the independent variable for this Polynomial function
90 */
91 ElemType evaluate(const ElemType& x) {
92 ElemType result = ElemType();
93 ExponentType exponent;
94 CoefficientType coefficient;
95
96 for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) {
97 exponent = i->first;
98 coefficient = i->second;
99 result += pow(x, exponent) * coefficient;
100 }
101
102 return result;
103 }
104
105 /**
106 * Returns the first derivative of this polynomial.
107 * @return the first derivative of this polynomial
108 * @param x
109 */
110 ElemType evaluateDerivative(const ElemType& x) {
111 ElemType result = ElemType();
112 ExponentType exponent;
113 CoefficientType coefficient;
114
115 for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) {
116 exponent = i->first;
117 coefficient = i->second;
118 result += pow(x, exponent - 1) * coefficient * exponent;
119 }
120
121 return result;
122 }
123
124 /**
125 * Set the coefficent of the specified exponent, if the coefficient is already there, it
126 * will be overwritten.
127 * @param exponent exponent of a term in this Polynomial
128 * @param coefficient multiplier of a term in this Polynomial
129 */
130
131 void setCoefficient(int exponent, const ElemType& coefficient) {
132 polyPairMap_[exponent] = coefficient;
133 }
134
135 /**
136 * Set the coefficent of the specified exponent. If the coefficient is already there, just add the
137 * new coefficient to the old one, otherwise, just call setCoefficent
138 * @param exponent exponent of a term in this Polynomial
139 * @param coefficient multiplier of a term in this Polynomial
140 */
141
142 void addCoefficient(int exponent, const ElemType& coefficient) {
143 iterator i = polyPairMap_.find(exponent);
144
145 if (i != end()) {
146 i->second += coefficient;
147 } else {
148 setCoefficient(exponent, coefficient);
149 }
150 }
151
152 /**
153 * Returns the coefficient associated with the given power for this Polynomial.
154 * @return the coefficient associated with the given power for this Polynomial
155 * @exponent exponent of any term in this Polynomial
156 */
157 ElemType getCoefficient(ExponentType exponent) {
158 iterator i = polyPairMap_.find(exponent);
159
160 if (i != end()) {
161 return i->second;
162 } else {
163 return ElemType(0);
164 }
165 }
166
167 iterator begin() {
168 return polyPairMap_.begin();
169 }
170
171 const_iterator begin() const{
172 return polyPairMap_.begin();
173 }
174
175 iterator end() {
176 return polyPairMap_.end();
177 }
178
179 const_iterator end() const{
180 return polyPairMap_.end();
181 }
182
183 iterator find(ExponentType exponent) {
184 return polyPairMap_.find(exponent);
185 }
186
187 size_t size() {
188 return polyPairMap_.size();
189 }
190
191 PolynomialType& operator = (const PolynomialType& p) {
192
193 if (this != &p) // protect against invalid self-assignment
194 {
195 typename Polynomial<ElemType>::const_iterator i;
196
197 polyPairMap_.clear(); // clear out the old map
198
199 for (i = p.begin(); i != p.end(); ++i) {
200 this->setCoefficient(i->first, i->second);
201 }
202 }
203 // by convention, always return *this
204 return *this;
205 }
206
207 PolynomialType& operator += (const PolynomialType& p) {
208 typename Polynomial<ElemType>::const_iterator i;
209
210 for (i = p.begin(); i != p.end(); ++i) {
211 this->addCoefficient(i->first, i->second);
212 }
213
214 return *this;
215 }
216
217 PolynomialType& operator -= (const PolynomialType& p) {
218 typename Polynomial<ElemType>::const_iterator i;
219 for (i = p.begin(); i != p.end(); ++i) {
220 this->addCoefficient(i->first, -i->second);
221 }
222 return *this;
223 }
224
225 PolynomialType& operator *= (const PolynomialType& p) {
226 typename Polynomial<ElemType>::const_iterator i;
227 typename Polynomial<ElemType>::const_iterator j;
228 Polynomial<ElemType> p2(*this);
229
230 polyPairMap_.clear(); // clear out old map
231 for (i = p2.begin(); i !=p2.end(); ++i) {
232 for (j = p.begin(); j !=p.end(); ++j) {
233 this->addCoefficient( i->first + j->first, i->second * j->second);
234 }
235 }
236 return *this;
237 }
238
239 //PolynomialType& operator *= (const ElemType v)
240 PolynomialType& operator *= (const ElemType v) {
241 typename Polynomial<ElemType>::const_iterator i;
242 //Polynomial<ElemType> result;
243
244 for (i = this->begin(); i != this->end(); ++i) {
245 this->setCoefficient( i->first, i->second*v);
246 }
247
248 return *this;
249 }
250
251 PolynomialType& operator += (const ElemType v) {
252 this->addCoefficient( 0, v);
253 return *this;
254 }
255
256 private:
257
258 PolynomialPairMap polyPairMap_;
259 };
260
261
262 /**
263 * Generates and returns the product of two given Polynomials.
264 * @return A Polynomial containing the product of the two given Polynomial parameters
265 */
266 template<typename ElemType>
267 Polynomial<ElemType> operator *(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
268 typename Polynomial<ElemType>::const_iterator i;
269 typename Polynomial<ElemType>::const_iterator j;
270 Polynomial<ElemType> p;
271
272 for (i = p1.begin(); i !=p1.end(); ++i) {
273 for (j = p2.begin(); j !=p2.end(); ++j) {
274 p.addCoefficient( i->first + j->first, i->second * j->second);
275 }
276 }
277
278 return p;
279 }
280
281 template<typename ElemType>
282 Polynomial<ElemType> operator *(const Polynomial<ElemType>& p, const ElemType v) {
283 typename Polynomial<ElemType>::const_iterator i;
284 Polynomial<ElemType> result;
285
286 for (i = p.begin(); i !=p.end(); ++i) {
287 result.setCoefficient( i->first , i->second * v);
288 }
289
290 return result;
291 }
292
293 template<typename ElemType>
294 Polynomial<ElemType> operator *( const ElemType v, const Polynomial<ElemType>& p) {
295 typename Polynomial<ElemType>::const_iterator i;
296 Polynomial<ElemType> result;
297
298 for (i = p.begin(); i !=p.end(); ++i) {
299 result.setCoefficient( i->first , i->second * v);
300 }
301
302 return result;
303 }
304
305 /**
306 * Generates and returns the sum of two given Polynomials.
307 * @param p1 the first polynomial
308 * @param p2 the second polynomial
309 */
310 template<typename ElemType>
311 Polynomial<ElemType> operator +(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
312 Polynomial<ElemType> p(p1);
313
314 typename Polynomial<ElemType>::const_iterator i;
315
316 for (i = p2.begin(); i != p2.end(); ++i) {
317 p.addCoefficient(i->first, i->second);
318 }
319
320 return p;
321
322 }
323
324 /**
325 * Generates and returns the difference of two given Polynomials.
326 * @return
327 * @param p1 the first polynomial
328 * @param p2 the second polynomial
329 */
330 template<typename ElemType>
331 Polynomial<ElemType> operator -(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
332 Polynomial<ElemType> p(p1);
333
334 typename Polynomial<ElemType>::const_iterator i;
335
336 for (i = p2.begin(); i != p2.end(); ++i) {
337 p.addCoefficient(i->first, -i->second);
338 }
339
340 return p;
341
342 }
343
344 /**
345 * Tests if two polynomial have the same exponents
346 * @return true if all of the exponents in these Polynomial are identical
347 * @param p1 the first polynomial
348 * @param p2 the second polynomial
349 * @note this function does not compare the coefficient
350 */
351 template<typename ElemType>
352 bool equal(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
353
354 typename Polynomial<ElemType>::const_iterator i;
355 typename Polynomial<ElemType>::const_iterator j;
356
357 if (p1.size() != p2.size() ) {
358 return false;
359 }
360
361 for (i = p1.begin(), j = p2.begin(); i != p1.end() && j != p2.end(); ++i, ++j) {
362 if (i->first != j->first) {
363 return false;
364 }
365 }
366
367 return true;
368 }
369
370 typedef Polynomial<RealType> DoublePolynomial;
371
372 } //end namespace oopse
373 #endif //MATH_POLYNOMIAL_HPP

Properties

Name Value
svn:executable *