1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Acknowledgement of the program authors must be made in any |
10 |
* publication of scientific results based in part on use of the |
11 |
* program. An acceptable form of acknowledgement is citation of |
12 |
* the article in which the program was described (Matthew |
13 |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
* |
18 |
* 2. Redistributions of source code must retain the above copyright |
19 |
* notice, this list of conditions and the following disclaimer. |
20 |
* |
21 |
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
* notice, this list of conditions and the following disclaimer in the |
23 |
* documentation and/or other materials provided with the |
24 |
* distribution. |
25 |
* |
26 |
* This software is provided "AS IS," without a warranty of any |
27 |
* kind. All express or implied conditions, representations and |
28 |
* warranties, including any implied warranty of merchantability, |
29 |
* fitness for a particular purpose or non-infringement, are hereby |
30 |
* excluded. The University of Notre Dame and its licensors shall not |
31 |
* be liable for any damages suffered by licensee as a result of |
32 |
* using, modifying or distributing the software or its |
33 |
* derivatives. In no event will the University of Notre Dame or its |
34 |
* licensors be liable for any lost revenue, profit or data, or for |
35 |
* direct, indirect, special, consequential, incidental or punitive |
36 |
* damages, however caused and regardless of the theory of liability, |
37 |
* arising out of the use of or inability to use software, even if the |
38 |
* University of Notre Dame has been advised of the possibility of |
39 |
* such damages. |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file Polynomial.hpp |
44 |
* @author teng lin |
45 |
* @date 11/16/2004 |
46 |
* @version 1.0 |
47 |
*/ |
48 |
|
49 |
#ifndef MATH_POLYNOMIAL_HPP |
50 |
#define MATH_POLYNOMIAL_HPP |
51 |
|
52 |
#include <iostream> |
53 |
#include <list> |
54 |
#include <map> |
55 |
#include <utility> |
56 |
#include "config.h" |
57 |
namespace oopse { |
58 |
|
59 |
template<typename ElemType> ElemType pow(ElemType x, int N) { |
60 |
ElemType result(1); |
61 |
|
62 |
for (int i = 0; i < N; ++i) { |
63 |
result *= x; |
64 |
} |
65 |
|
66 |
return result; |
67 |
} |
68 |
|
69 |
/** |
70 |
* @class Polynomial Polynomial.hpp "math/Polynomial.hpp" |
71 |
* A generic Polynomial class |
72 |
*/ |
73 |
template<typename ElemType> |
74 |
class Polynomial { |
75 |
|
76 |
public: |
77 |
typedef Polynomial<ElemType> PolynomialType; |
78 |
typedef int ExponentType; |
79 |
typedef ElemType CoefficientType; |
80 |
typedef std::map<ExponentType, CoefficientType> PolynomialPairMap; |
81 |
typedef typename PolynomialPairMap::iterator iterator; |
82 |
typedef typename PolynomialPairMap::const_iterator const_iterator; |
83 |
|
84 |
Polynomial() {} |
85 |
Polynomial(ElemType v) {setCoefficient(0, v);} |
86 |
/** |
87 |
* Calculates the value of this Polynomial evaluated at the given x value. |
88 |
* @return The value of this Polynomial evaluates at the given x value |
89 |
* @param x the value of the independent variable for this Polynomial function |
90 |
*/ |
91 |
ElemType evaluate(const ElemType& x) { |
92 |
ElemType result = ElemType(); |
93 |
ExponentType exponent; |
94 |
CoefficientType coefficient; |
95 |
|
96 |
for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) { |
97 |
exponent = i->first; |
98 |
coefficient = i->second; |
99 |
result += pow(x, exponent) * coefficient; |
100 |
} |
101 |
|
102 |
return result; |
103 |
} |
104 |
|
105 |
/** |
106 |
* Returns the first derivative of this polynomial. |
107 |
* @return the first derivative of this polynomial |
108 |
* @param x |
109 |
*/ |
110 |
ElemType evaluateDerivative(const ElemType& x) { |
111 |
ElemType result = ElemType(); |
112 |
ExponentType exponent; |
113 |
CoefficientType coefficient; |
114 |
|
115 |
for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) { |
116 |
exponent = i->first; |
117 |
coefficient = i->second; |
118 |
result += pow(x, exponent - 1) * coefficient * exponent; |
119 |
} |
120 |
|
121 |
return result; |
122 |
} |
123 |
|
124 |
/** |
125 |
* Set the coefficent of the specified exponent, if the coefficient is already there, it |
126 |
* will be overwritten. |
127 |
* @param exponent exponent of a term in this Polynomial |
128 |
* @param coefficient multiplier of a term in this Polynomial |
129 |
*/ |
130 |
|
131 |
void setCoefficient(int exponent, const ElemType& coefficient) { |
132 |
polyPairMap_[exponent] = coefficient; |
133 |
} |
134 |
|
135 |
/** |
136 |
* Set the coefficent of the specified exponent. If the coefficient is already there, just add the |
137 |
* new coefficient to the old one, otherwise, just call setCoefficent |
138 |
* @param exponent exponent of a term in this Polynomial |
139 |
* @param coefficient multiplier of a term in this Polynomial |
140 |
*/ |
141 |
|
142 |
void addCoefficient(int exponent, const ElemType& coefficient) { |
143 |
iterator i = polyPairMap_.find(exponent); |
144 |
|
145 |
if (i != end()) { |
146 |
i->second += coefficient; |
147 |
} else { |
148 |
setCoefficient(exponent, coefficient); |
149 |
} |
150 |
} |
151 |
|
152 |
/** |
153 |
* Returns the coefficient associated with the given power for this Polynomial. |
154 |
* @return the coefficient associated with the given power for this Polynomial |
155 |
* @exponent exponent of any term in this Polynomial |
156 |
*/ |
157 |
ElemType getCoefficient(ExponentType exponent) { |
158 |
iterator i = polyPairMap_.find(exponent); |
159 |
|
160 |
if (i != end()) { |
161 |
return i->second; |
162 |
} else { |
163 |
return ElemType(0); |
164 |
} |
165 |
} |
166 |
|
167 |
iterator begin() { |
168 |
return polyPairMap_.begin(); |
169 |
} |
170 |
|
171 |
const_iterator begin() const{ |
172 |
return polyPairMap_.begin(); |
173 |
} |
174 |
|
175 |
iterator end() { |
176 |
return polyPairMap_.end(); |
177 |
} |
178 |
|
179 |
const_iterator end() const{ |
180 |
return polyPairMap_.end(); |
181 |
} |
182 |
|
183 |
iterator find(ExponentType exponent) { |
184 |
return polyPairMap_.find(exponent); |
185 |
} |
186 |
|
187 |
size_t size() { |
188 |
return polyPairMap_.size(); |
189 |
} |
190 |
|
191 |
PolynomialType& operator = (const PolynomialType& p) { |
192 |
|
193 |
if (this != &p) // protect against invalid self-assignment |
194 |
{ |
195 |
typename Polynomial<ElemType>::const_iterator i; |
196 |
|
197 |
polyPairMap_.clear(); // clear out the old map |
198 |
|
199 |
for (i = p.begin(); i != p.end(); ++i) { |
200 |
this->setCoefficient(i->first, i->second); |
201 |
} |
202 |
} |
203 |
// by convention, always return *this |
204 |
return *this; |
205 |
} |
206 |
|
207 |
PolynomialType& operator += (const PolynomialType& p) { |
208 |
typename Polynomial<ElemType>::const_iterator i; |
209 |
|
210 |
for (i = p.begin(); i != p.end(); ++i) { |
211 |
this->addCoefficient(i->first, i->second); |
212 |
} |
213 |
|
214 |
return *this; |
215 |
} |
216 |
|
217 |
PolynomialType& operator -= (const PolynomialType& p) { |
218 |
typename Polynomial<ElemType>::const_iterator i; |
219 |
for (i = p.begin(); i != p.end(); ++i) { |
220 |
this->addCoefficient(i->first, -i->second); |
221 |
} |
222 |
return *this; |
223 |
} |
224 |
|
225 |
PolynomialType& operator *= (const PolynomialType& p) { |
226 |
typename Polynomial<ElemType>::const_iterator i; |
227 |
typename Polynomial<ElemType>::const_iterator j; |
228 |
Polynomial<ElemType> p2(*this); |
229 |
|
230 |
polyPairMap_.clear(); // clear out old map |
231 |
for (i = p2.begin(); i !=p2.end(); ++i) { |
232 |
for (j = p.begin(); j !=p.end(); ++j) { |
233 |
this->addCoefficient( i->first + j->first, i->second * j->second); |
234 |
} |
235 |
} |
236 |
return *this; |
237 |
} |
238 |
|
239 |
//PolynomialType& operator *= (const ElemType v) |
240 |
PolynomialType& operator *= (const ElemType v) { |
241 |
typename Polynomial<ElemType>::const_iterator i; |
242 |
//Polynomial<ElemType> result; |
243 |
|
244 |
for (i = this->begin(); i != this->end(); ++i) { |
245 |
this->setCoefficient( i->first, i->second*v); |
246 |
} |
247 |
|
248 |
return *this; |
249 |
} |
250 |
|
251 |
PolynomialType& operator += (const ElemType v) { |
252 |
this->addCoefficient( 0, v); |
253 |
return *this; |
254 |
} |
255 |
|
256 |
private: |
257 |
|
258 |
PolynomialPairMap polyPairMap_; |
259 |
}; |
260 |
|
261 |
|
262 |
/** |
263 |
* Generates and returns the product of two given Polynomials. |
264 |
* @return A Polynomial containing the product of the two given Polynomial parameters |
265 |
*/ |
266 |
template<typename ElemType> |
267 |
Polynomial<ElemType> operator *(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { |
268 |
typename Polynomial<ElemType>::const_iterator i; |
269 |
typename Polynomial<ElemType>::const_iterator j; |
270 |
Polynomial<ElemType> p; |
271 |
|
272 |
for (i = p1.begin(); i !=p1.end(); ++i) { |
273 |
for (j = p2.begin(); j !=p2.end(); ++j) { |
274 |
p.addCoefficient( i->first + j->first, i->second * j->second); |
275 |
} |
276 |
} |
277 |
|
278 |
return p; |
279 |
} |
280 |
|
281 |
template<typename ElemType> |
282 |
Polynomial<ElemType> operator *(const Polynomial<ElemType>& p, const ElemType v) { |
283 |
typename Polynomial<ElemType>::const_iterator i; |
284 |
Polynomial<ElemType> result; |
285 |
|
286 |
for (i = p.begin(); i !=p.end(); ++i) { |
287 |
result.setCoefficient( i->first , i->second * v); |
288 |
} |
289 |
|
290 |
return result; |
291 |
} |
292 |
|
293 |
template<typename ElemType> |
294 |
Polynomial<ElemType> operator *( const ElemType v, const Polynomial<ElemType>& p) { |
295 |
typename Polynomial<ElemType>::const_iterator i; |
296 |
Polynomial<ElemType> result; |
297 |
|
298 |
for (i = p.begin(); i !=p.end(); ++i) { |
299 |
result.setCoefficient( i->first , i->second * v); |
300 |
} |
301 |
|
302 |
return result; |
303 |
} |
304 |
|
305 |
/** |
306 |
* Generates and returns the sum of two given Polynomials. |
307 |
* @param p1 the first polynomial |
308 |
* @param p2 the second polynomial |
309 |
*/ |
310 |
template<typename ElemType> |
311 |
Polynomial<ElemType> operator +(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { |
312 |
Polynomial<ElemType> p(p1); |
313 |
|
314 |
typename Polynomial<ElemType>::const_iterator i; |
315 |
|
316 |
for (i = p2.begin(); i != p2.end(); ++i) { |
317 |
p.addCoefficient(i->first, i->second); |
318 |
} |
319 |
|
320 |
return p; |
321 |
|
322 |
} |
323 |
|
324 |
/** |
325 |
* Generates and returns the difference of two given Polynomials. |
326 |
* @return |
327 |
* @param p1 the first polynomial |
328 |
* @param p2 the second polynomial |
329 |
*/ |
330 |
template<typename ElemType> |
331 |
Polynomial<ElemType> operator -(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { |
332 |
Polynomial<ElemType> p(p1); |
333 |
|
334 |
typename Polynomial<ElemType>::const_iterator i; |
335 |
|
336 |
for (i = p2.begin(); i != p2.end(); ++i) { |
337 |
p.addCoefficient(i->first, -i->second); |
338 |
} |
339 |
|
340 |
return p; |
341 |
|
342 |
} |
343 |
|
344 |
/** |
345 |
* Tests if two polynomial have the same exponents |
346 |
* @return true if all of the exponents in these Polynomial are identical |
347 |
* @param p1 the first polynomial |
348 |
* @param p2 the second polynomial |
349 |
* @note this function does not compare the coefficient |
350 |
*/ |
351 |
template<typename ElemType> |
352 |
bool equal(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { |
353 |
|
354 |
typename Polynomial<ElemType>::const_iterator i; |
355 |
typename Polynomial<ElemType>::const_iterator j; |
356 |
|
357 |
if (p1.size() != p2.size() ) { |
358 |
return false; |
359 |
} |
360 |
|
361 |
for (i = p1.begin(), j = p2.begin(); i != p1.end() && j != p2.end(); ++i, ++j) { |
362 |
if (i->first != j->first) { |
363 |
return false; |
364 |
} |
365 |
} |
366 |
|
367 |
return true; |
368 |
} |
369 |
|
370 |
typedef Polynomial<RealType> DoublePolynomial; |
371 |
|
372 |
} //end namespace oopse |
373 |
#endif //MATH_POLYNOMIAL_HPP |