1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Acknowledgement of the program authors must be made in any |
10 |
* publication of scientific results based in part on use of the |
11 |
* program. An acceptable form of acknowledgement is citation of |
12 |
* the article in which the program was described (Matthew |
13 |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
* |
18 |
* 2. Redistributions of source code must retain the above copyright |
19 |
* notice, this list of conditions and the following disclaimer. |
20 |
* |
21 |
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
* notice, this list of conditions and the following disclaimer in the |
23 |
* documentation and/or other materials provided with the |
24 |
* distribution. |
25 |
* |
26 |
* This software is provided "AS IS," without a warranty of any |
27 |
* kind. All express or implied conditions, representations and |
28 |
* warranties, including any implied warranty of merchantability, |
29 |
* fitness for a particular purpose or non-infringement, are hereby |
30 |
* excluded. The University of Notre Dame and its licensors shall not |
31 |
* be liable for any damages suffered by licensee as a result of |
32 |
* using, modifying or distributing the software or its |
33 |
* derivatives. In no event will the University of Notre Dame or its |
34 |
* licensors be liable for any lost revenue, profit or data, or for |
35 |
* direct, indirect, special, consequential, incidental or punitive |
36 |
* damages, however caused and regardless of the theory of liability, |
37 |
* arising out of the use of or inability to use software, even if the |
38 |
* University of Notre Dame has been advised of the possibility of |
39 |
* such damages. |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file Polynomial.hpp |
44 |
* @author teng lin |
45 |
* @date 11/16/2004 |
46 |
* @version 1.0 |
47 |
*/ |
48 |
|
49 |
#ifndef MATH_POLYNOMIAL_HPP |
50 |
#define MATH_POLYNOMIAL_HPP |
51 |
|
52 |
#include <iostream> |
53 |
#include <list> |
54 |
#include <map> |
55 |
#include <utility> |
56 |
#include "config.h" |
57 |
namespace oopse { |
58 |
|
59 |
template<typename ElemType> ElemType pow(ElemType x, int N) { |
60 |
ElemType result(1); |
61 |
|
62 |
for (int i = 0; i < N; ++i) { |
63 |
result *= x; |
64 |
} |
65 |
|
66 |
return result; |
67 |
} |
68 |
|
69 |
/** |
70 |
* @class Polynomial Polynomial.hpp "math/Polynomial.hpp" |
71 |
* A generic Polynomial class |
72 |
*/ |
73 |
template<typename ElemType> |
74 |
class Polynomial { |
75 |
|
76 |
public: |
77 |
typedef Polynomial<ElemType> PolynomialType; |
78 |
typedef int ExponentType; |
79 |
typedef ElemType CoefficientType; |
80 |
typedef std::map<ExponentType, CoefficientType> PolynomialPairMap; |
81 |
typedef typename PolynomialPairMap::iterator iterator; |
82 |
typedef typename PolynomialPairMap::const_iterator const_iterator; |
83 |
|
84 |
Polynomial() {} |
85 |
Polynomial(ElemType v) {setCoefficient(0, v);} |
86 |
/** |
87 |
* Calculates the value of this Polynomial evaluated at the given x value. |
88 |
* @return The value of this Polynomial evaluates at the given x value |
89 |
* @param x the value of the independent variable for this Polynomial function |
90 |
*/ |
91 |
ElemType evaluate(const ElemType& x) { |
92 |
ElemType result = ElemType(); |
93 |
ExponentType exponent; |
94 |
CoefficientType coefficient; |
95 |
|
96 |
for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) { |
97 |
exponent = i->first; |
98 |
coefficient = i->second; |
99 |
result += pow(x, exponent) * coefficient; |
100 |
} |
101 |
|
102 |
return result; |
103 |
} |
104 |
|
105 |
/** |
106 |
* Returns the first derivative of this polynomial. |
107 |
* @return the first derivative of this polynomial |
108 |
* @param x |
109 |
*/ |
110 |
ElemType evaluateDerivative(const ElemType& x) { |
111 |
ElemType result = ElemType(); |
112 |
ExponentType exponent; |
113 |
CoefficientType coefficient; |
114 |
|
115 |
for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) { |
116 |
exponent = i->first; |
117 |
coefficient = i->second; |
118 |
result += pow(x, exponent - 1) * coefficient * exponent; |
119 |
} |
120 |
|
121 |
return result; |
122 |
} |
123 |
|
124 |
/** |
125 |
* Set the coefficent of the specified exponent, if the coefficient is already there, it |
126 |
* will be overwritten. |
127 |
* @param exponent exponent of a term in this Polynomial |
128 |
* @param coefficient multiplier of a term in this Polynomial |
129 |
*/ |
130 |
|
131 |
void setCoefficient(int exponent, const ElemType& coefficient) { |
132 |
polyPairMap_.insert(typename PolynomialPairMap::value_type(exponent, coefficient)); |
133 |
} |
134 |
|
135 |
/** |
136 |
* Set the coefficent of the specified exponent. If the coefficient is already there, just add the |
137 |
* new coefficient to the old one, otherwise, just call setCoefficent |
138 |
* @param exponent exponent of a term in this Polynomial |
139 |
* @param coefficient multiplier of a term in this Polynomial |
140 |
*/ |
141 |
|
142 |
void addCoefficient(int exponent, const ElemType& coefficient) { |
143 |
iterator i = polyPairMap_.find(exponent); |
144 |
|
145 |
if (i != end()) { |
146 |
i->second += coefficient; |
147 |
} else { |
148 |
setCoefficient(exponent, coefficient); |
149 |
} |
150 |
} |
151 |
|
152 |
|
153 |
/** |
154 |
* Returns the coefficient associated with the given power for this Polynomial. |
155 |
* @return the coefficient associated with the given power for this Polynomial |
156 |
* @exponent exponent of any term in this Polynomial |
157 |
*/ |
158 |
ElemType getCoefficient(ExponentType exponent) { |
159 |
iterator i = polyPairMap_.find(exponent); |
160 |
|
161 |
if (i != end()) { |
162 |
return i->second; |
163 |
} else { |
164 |
return ElemType(0); |
165 |
} |
166 |
} |
167 |
|
168 |
iterator begin() { |
169 |
return polyPairMap_.begin(); |
170 |
} |
171 |
|
172 |
const_iterator begin() const{ |
173 |
return polyPairMap_.begin(); |
174 |
} |
175 |
|
176 |
iterator end() { |
177 |
return polyPairMap_.end(); |
178 |
} |
179 |
|
180 |
const_iterator end() const{ |
181 |
return polyPairMap_.end(); |
182 |
} |
183 |
|
184 |
iterator find(ExponentType exponent) { |
185 |
return polyPairMap_.find(exponent); |
186 |
} |
187 |
|
188 |
size_t size() { |
189 |
return polyPairMap_.size(); |
190 |
} |
191 |
|
192 |
PolynomialType& operator = (const PolynomialType& p) { |
193 |
|
194 |
if (this != &p) // protect against invalid self-assignment |
195 |
{ |
196 |
typename Polynomial<ElemType>::const_iterator i; |
197 |
|
198 |
polyPairMap_.clear(); // clear out the old map |
199 |
|
200 |
for (i = p.begin(); i != p.end(); ++i) { |
201 |
this->setCoefficient(i->first, i->second); |
202 |
} |
203 |
} |
204 |
// by convention, always return *this |
205 |
return *this; |
206 |
} |
207 |
|
208 |
PolynomialType& operator += (const PolynomialType& p) { |
209 |
typename Polynomial<ElemType>::const_iterator i; |
210 |
|
211 |
for (i = p.begin(); i != p.end(); ++i) { |
212 |
this->addCoefficient(i->first, i->second); |
213 |
} |
214 |
|
215 |
return *this; |
216 |
} |
217 |
|
218 |
PolynomialType& operator -= (const PolynomialType& p) { |
219 |
typename Polynomial<ElemType>::const_iterator i; |
220 |
for (i = p.begin(); i != p.end(); ++i) { |
221 |
this->addCoefficient(i->first, -i->second); |
222 |
} |
223 |
return *this; |
224 |
} |
225 |
|
226 |
PolynomialType& operator *= (const PolynomialType& p) { |
227 |
typename Polynomial<ElemType>::const_iterator i; |
228 |
typename Polynomial<ElemType>::const_iterator j; |
229 |
|
230 |
for (i = this->begin(); i !=this->end(); ++i) { |
231 |
for (j = p.begin(); j !=p.end(); ++j) { |
232 |
this->addCoefficient( i->first + j->first, i->second * j->second); |
233 |
} |
234 |
} |
235 |
|
236 |
return *this; |
237 |
} |
238 |
|
239 |
|
240 |
private: |
241 |
|
242 |
PolynomialPairMap polyPairMap_; |
243 |
}; |
244 |
|
245 |
|
246 |
/** |
247 |
* Generates and returns the product of two given Polynomials. |
248 |
* @return A Polynomial containing the product of the two given Polynomial parameters |
249 |
*/ |
250 |
template<typename ElemType> |
251 |
Polynomial<ElemType> operator *(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { |
252 |
typename Polynomial<ElemType>::const_iterator i; |
253 |
typename Polynomial<ElemType>::const_iterator j; |
254 |
Polynomial<ElemType> p; |
255 |
|
256 |
for (i = p1.begin(); i !=p1.end(); ++i) { |
257 |
for (j = p2.begin(); j !=p2.end(); ++j) { |
258 |
p.addCoefficient( i->first + j->first, i->second * j->second); |
259 |
} |
260 |
} |
261 |
|
262 |
return p; |
263 |
} |
264 |
|
265 |
template<typename ElemType> |
266 |
Polynomial<ElemType> operator *(const Polynomial<ElemType>& p, const ElemType v) { |
267 |
typename Polynomial<ElemType>::const_iterator i; |
268 |
Polynomial<ElemType> result; |
269 |
|
270 |
for (i = p.begin(); i !=p.end(); ++i) { |
271 |
result.addCoefficient( i->first , i->second * v); |
272 |
} |
273 |
|
274 |
return result; |
275 |
} |
276 |
|
277 |
template<typename ElemType> |
278 |
Polynomial<ElemType> operator *( const ElemType v, const Polynomial<ElemType>& p) { |
279 |
typename Polynomial<ElemType>::const_iterator i; |
280 |
Polynomial<ElemType> result; |
281 |
|
282 |
for (i = p.begin(); i !=p.end(); ++i) { |
283 |
result.addCoefficient( i->first , i->second * v); |
284 |
} |
285 |
|
286 |
return result; |
287 |
} |
288 |
|
289 |
/** |
290 |
* Generates and returns the sum of two given Polynomials. |
291 |
* @param p1 the first polynomial |
292 |
* @param p2 the second polynomial |
293 |
*/ |
294 |
template<typename ElemType> |
295 |
Polynomial<ElemType> operator +(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { |
296 |
Polynomial<ElemType> p(p1); |
297 |
|
298 |
typename Polynomial<ElemType>::const_iterator i; |
299 |
|
300 |
for (i = p2.begin(); i != p2.end(); ++i) { |
301 |
p.addCoefficient(i->first, i->second); |
302 |
} |
303 |
|
304 |
return p; |
305 |
|
306 |
} |
307 |
|
308 |
/** |
309 |
* Generates and returns the difference of two given Polynomials. |
310 |
* @return |
311 |
* @param p1 the first polynomial |
312 |
* @param p2 the second polynomial |
313 |
*/ |
314 |
template<typename ElemType> |
315 |
Polynomial<ElemType> operator -(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { |
316 |
Polynomial<ElemType> p(p1); |
317 |
|
318 |
typename Polynomial<ElemType>::const_iterator i; |
319 |
|
320 |
for (i = p2.begin(); i != p2.end(); ++i) { |
321 |
p.addCoefficient(i->first, -i->second); |
322 |
} |
323 |
|
324 |
return p; |
325 |
|
326 |
} |
327 |
|
328 |
/** |
329 |
* Tests if two polynomial have the same exponents |
330 |
* @return true if all of the exponents in these Polynomial are identical |
331 |
* @param p1 the first polynomial |
332 |
* @param p2 the second polynomial |
333 |
* @note this function does not compare the coefficient |
334 |
*/ |
335 |
template<typename ElemType> |
336 |
bool equal(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) { |
337 |
|
338 |
typename Polynomial<ElemType>::const_iterator i; |
339 |
typename Polynomial<ElemType>::const_iterator j; |
340 |
|
341 |
if (p1.size() != p2.size() ) { |
342 |
return false; |
343 |
} |
344 |
|
345 |
for (i = p1.begin(), j = p2.begin(); i != p1.end() && j != p2.end(); ++i, ++j) { |
346 |
if (i->first != j->first) { |
347 |
return false; |
348 |
} |
349 |
} |
350 |
|
351 |
return true; |
352 |
} |
353 |
|
354 |
typedef Polynomial<RealType> DoublePolynomial; |
355 |
|
356 |
} //end namespace oopse |
357 |
#endif //MATH_POLYNOMIAL_HPP |