ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/math/Polynomial.hpp
Revision: 1230
Committed: Fri Mar 7 19:37:14 2008 UTC (17 years, 1 month ago) by cpuglis
File size: 10644 byte(s)
Log Message:
Changed some logic in Polynomial, PolynomialTorsionType, and CharmmTorsionType
to allow for polynomials to be set via the = operator.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 */
41
42 /**
43 * @file Polynomial.hpp
44 * @author teng lin
45 * @date 11/16/2004
46 * @version 1.0
47 */
48
49 #ifndef MATH_POLYNOMIAL_HPP
50 #define MATH_POLYNOMIAL_HPP
51
52 #include <iostream>
53 #include <list>
54 #include <map>
55 #include <utility>
56 #include "config.h"
57 namespace oopse {
58
59 template<typename ElemType> ElemType pow(ElemType x, int N) {
60 ElemType result(1);
61
62 for (int i = 0; i < N; ++i) {
63 result *= x;
64 }
65
66 return result;
67 }
68
69 /**
70 * @class Polynomial Polynomial.hpp "math/Polynomial.hpp"
71 * A generic Polynomial class
72 */
73 template<typename ElemType>
74 class Polynomial {
75
76 public:
77 typedef Polynomial<ElemType> PolynomialType;
78 typedef int ExponentType;
79 typedef ElemType CoefficientType;
80 typedef std::map<ExponentType, CoefficientType> PolynomialPairMap;
81 typedef typename PolynomialPairMap::iterator iterator;
82 typedef typename PolynomialPairMap::const_iterator const_iterator;
83
84 Polynomial() {}
85 Polynomial(ElemType v) {setCoefficient(0, v);}
86 /**
87 * Calculates the value of this Polynomial evaluated at the given x value.
88 * @return The value of this Polynomial evaluates at the given x value
89 * @param x the value of the independent variable for this Polynomial function
90 */
91 ElemType evaluate(const ElemType& x) {
92 ElemType result = ElemType();
93 ExponentType exponent;
94 CoefficientType coefficient;
95
96 for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) {
97 exponent = i->first;
98 coefficient = i->second;
99 result += pow(x, exponent) * coefficient;
100 }
101
102 return result;
103 }
104
105 /**
106 * Returns the first derivative of this polynomial.
107 * @return the first derivative of this polynomial
108 * @param x
109 */
110 ElemType evaluateDerivative(const ElemType& x) {
111 ElemType result = ElemType();
112 ExponentType exponent;
113 CoefficientType coefficient;
114
115 for (iterator i = polyPairMap_.begin(); i != polyPairMap_.end(); ++i) {
116 exponent = i->first;
117 coefficient = i->second;
118 result += pow(x, exponent - 1) * coefficient * exponent;
119 }
120
121 return result;
122 }
123
124 /**
125 * Set the coefficent of the specified exponent, if the coefficient is already there, it
126 * will be overwritten.
127 * @param exponent exponent of a term in this Polynomial
128 * @param coefficient multiplier of a term in this Polynomial
129 */
130
131 void setCoefficient(int exponent, const ElemType& coefficient) {
132 polyPairMap_.insert(typename PolynomialPairMap::value_type(exponent, coefficient));
133 }
134
135 /**
136 * Set the coefficent of the specified exponent. If the coefficient is already there, just add the
137 * new coefficient to the old one, otherwise, just call setCoefficent
138 * @param exponent exponent of a term in this Polynomial
139 * @param coefficient multiplier of a term in this Polynomial
140 */
141
142 void addCoefficient(int exponent, const ElemType& coefficient) {
143 iterator i = polyPairMap_.find(exponent);
144
145 if (i != end()) {
146 i->second += coefficient;
147 } else {
148 setCoefficient(exponent, coefficient);
149 }
150 }
151
152
153 /**
154 * Returns the coefficient associated with the given power for this Polynomial.
155 * @return the coefficient associated with the given power for this Polynomial
156 * @exponent exponent of any term in this Polynomial
157 */
158 ElemType getCoefficient(ExponentType exponent) {
159 iterator i = polyPairMap_.find(exponent);
160
161 if (i != end()) {
162 return i->second;
163 } else {
164 return ElemType(0);
165 }
166 }
167
168 iterator begin() {
169 return polyPairMap_.begin();
170 }
171
172 const_iterator begin() const{
173 return polyPairMap_.begin();
174 }
175
176 iterator end() {
177 return polyPairMap_.end();
178 }
179
180 const_iterator end() const{
181 return polyPairMap_.end();
182 }
183
184 iterator find(ExponentType exponent) {
185 return polyPairMap_.find(exponent);
186 }
187
188 size_t size() {
189 return polyPairMap_.size();
190 }
191
192 PolynomialType& operator = (const PolynomialType& p) {
193
194 if (this != &p) // protect against invalid self-assignment
195 {
196 typename Polynomial<ElemType>::const_iterator i;
197
198 polyPairMap_.clear(); // clear out the old map
199
200 for (i = p.begin(); i != p.end(); ++i) {
201 this->setCoefficient(i->first, i->second);
202 }
203 }
204 // by convention, always return *this
205 return *this;
206 }
207
208 PolynomialType& operator += (const PolynomialType& p) {
209 typename Polynomial<ElemType>::const_iterator i;
210
211 for (i = p.begin(); i != p.end(); ++i) {
212 this->addCoefficient(i->first, i->second);
213 }
214
215 return *this;
216 }
217
218 PolynomialType& operator -= (const PolynomialType& p) {
219 typename Polynomial<ElemType>::const_iterator i;
220 for (i = p.begin(); i != p.end(); ++i) {
221 this->addCoefficient(i->first, -i->second);
222 }
223 return *this;
224 }
225
226 PolynomialType& operator *= (const PolynomialType& p) {
227 typename Polynomial<ElemType>::const_iterator i;
228 typename Polynomial<ElemType>::const_iterator j;
229
230 for (i = this->begin(); i !=this->end(); ++i) {
231 for (j = p.begin(); j !=p.end(); ++j) {
232 this->addCoefficient( i->first + j->first, i->second * j->second);
233 }
234 }
235
236 return *this;
237 }
238
239
240 private:
241
242 PolynomialPairMap polyPairMap_;
243 };
244
245
246 /**
247 * Generates and returns the product of two given Polynomials.
248 * @return A Polynomial containing the product of the two given Polynomial parameters
249 */
250 template<typename ElemType>
251 Polynomial<ElemType> operator *(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
252 typename Polynomial<ElemType>::const_iterator i;
253 typename Polynomial<ElemType>::const_iterator j;
254 Polynomial<ElemType> p;
255
256 for (i = p1.begin(); i !=p1.end(); ++i) {
257 for (j = p2.begin(); j !=p2.end(); ++j) {
258 p.addCoefficient( i->first + j->first, i->second * j->second);
259 }
260 }
261
262 return p;
263 }
264
265 template<typename ElemType>
266 Polynomial<ElemType> operator *(const Polynomial<ElemType>& p, const ElemType v) {
267 typename Polynomial<ElemType>::const_iterator i;
268 Polynomial<ElemType> result;
269
270 for (i = p.begin(); i !=p.end(); ++i) {
271 result.addCoefficient( i->first , i->second * v);
272 }
273
274 return result;
275 }
276
277 template<typename ElemType>
278 Polynomial<ElemType> operator *( const ElemType v, const Polynomial<ElemType>& p) {
279 typename Polynomial<ElemType>::const_iterator i;
280 Polynomial<ElemType> result;
281
282 for (i = p.begin(); i !=p.end(); ++i) {
283 result.addCoefficient( i->first , i->second * v);
284 }
285
286 return result;
287 }
288
289 /**
290 * Generates and returns the sum of two given Polynomials.
291 * @param p1 the first polynomial
292 * @param p2 the second polynomial
293 */
294 template<typename ElemType>
295 Polynomial<ElemType> operator +(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
296 Polynomial<ElemType> p(p1);
297
298 typename Polynomial<ElemType>::const_iterator i;
299
300 for (i = p2.begin(); i != p2.end(); ++i) {
301 p.addCoefficient(i->first, i->second);
302 }
303
304 return p;
305
306 }
307
308 /**
309 * Generates and returns the difference of two given Polynomials.
310 * @return
311 * @param p1 the first polynomial
312 * @param p2 the second polynomial
313 */
314 template<typename ElemType>
315 Polynomial<ElemType> operator -(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
316 Polynomial<ElemType> p(p1);
317
318 typename Polynomial<ElemType>::const_iterator i;
319
320 for (i = p2.begin(); i != p2.end(); ++i) {
321 p.addCoefficient(i->first, -i->second);
322 }
323
324 return p;
325
326 }
327
328 /**
329 * Tests if two polynomial have the same exponents
330 * @return true if all of the exponents in these Polynomial are identical
331 * @param p1 the first polynomial
332 * @param p2 the second polynomial
333 * @note this function does not compare the coefficient
334 */
335 template<typename ElemType>
336 bool equal(const Polynomial<ElemType>& p1, const Polynomial<ElemType>& p2) {
337
338 typename Polynomial<ElemType>::const_iterator i;
339 typename Polynomial<ElemType>::const_iterator j;
340
341 if (p1.size() != p2.size() ) {
342 return false;
343 }
344
345 for (i = p1.begin(), j = p2.begin(); i != p1.end() && j != p2.end(); ++i, ++j) {
346 if (i->first != j->first) {
347 return false;
348 }
349 }
350
351 return true;
352 }
353
354 typedef Polynomial<RealType> DoublePolynomial;
355
356 } //end namespace oopse
357 #endif //MATH_POLYNOMIAL_HPP

Properties

Name Value
svn:executable *