ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/math/CubicSpline.cpp
Revision: 2071
Committed: Sat Mar 7 21:41:51 2015 UTC (10 years, 1 month ago) by gezelter
File size: 9359 byte(s)
Log Message:
Reducing the number of warnings when using g++ to compile.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 #include "math/CubicSpline.hpp"
44 #include <cmath>
45 #include <cassert>
46 #include <cstdio>
47 #include <algorithm>
48 #include <numeric>
49
50 using namespace OpenMD;
51 using namespace std;
52
53 CubicSpline::CubicSpline() : isUniform(true), generated(false) {
54 x_.clear();
55 y_.clear();
56 }
57
58 void CubicSpline::addPoint(const RealType xp, const RealType yp) {
59 x_.push_back(xp);
60 y_.push_back(yp);
61 }
62
63 void CubicSpline::addPoints(const vector<RealType>& xps,
64 const vector<RealType>& yps) {
65
66 assert(xps.size() == yps.size());
67
68 for (unsigned int i = 0; i < xps.size(); i++){
69 x_.push_back(xps[i]);
70 y_.push_back(yps[i]);
71 }
72 }
73
74 void CubicSpline::generate() {
75 // Calculate coefficients defining a smooth cubic interpolatory spline.
76 //
77 // class values constructed:
78 // n = number of data_ points.
79 // x_ = vector of independent variable values
80 // y_ = vector of dependent variable values
81 // b = vector of S'(x_[i]) values.
82 // c = vector of S"(x_[i])/2 values.
83 // d = vector of S'''(x_[i]+)/6 values (i < n).
84 // Local variables:
85
86 RealType fp1, fpn, p;
87 RealType h(0.0);
88
89 // make sure the sizes match
90
91 n = x_.size();
92 b.resize(n);
93 c.resize(n);
94 d.resize(n);
95
96 // make sure we are monotonically increasing in x:
97
98 bool sorted = true;
99
100 for (int i = 1; i < n; i++) {
101 if ( (x_[i] - x_[i-1] ) <= 0.0 ) sorted = false;
102 }
103
104 // sort if necessary
105
106 if (!sorted) {
107 vector<int> p = sort_permutation(x_);
108 x_ = apply_permutation(x_, p);
109 y_ = apply_permutation(y_, p);
110 }
111
112
113 // Calculate coefficients for the tridiagonal system: store
114 // sub-diagonal in B, diagonal in D, difference quotient in C.
115
116 b[0] = x_[1] - x_[0];
117 c[0] = (y_[1] - y_[0]) / b[0];
118
119 if (n == 2) {
120
121 // Assume the derivatives at both endpoints are zero. Another
122 // assumption could be made to have a linear interpolant between
123 // the two points. In that case, the b coefficients below would be
124 // (y_[1] - y_[0]) / (x_[1] - x_[0])
125 // and the c and d coefficients would both be zero.
126 b[0] = 0.0;
127 c[0] = -3.0 * pow((y_[1] - y_[0]) / (x_[1] - x_[0]), 2);
128 d[0] = -2.0 * pow((y_[1] - y_[0]) / (x_[1] - x_[0]), 3);
129 b[1] = b[0];
130 c[1] = 0.0;
131 d[1] = 0.0;
132 dx = 1.0 / (x_[1] - x_[0]);
133 isUniform = true;
134 generated = true;
135 return;
136 }
137
138 d[0] = 2.0 * b[0];
139
140 for (int i = 1; i < n-1; i++) {
141 b[i] = x_[i+1] - x_[i];
142 if ( fabs( b[i] - b[0] ) / b[0] > 1.0e-5) isUniform = false;
143 c[i] = (y_[i+1] - y_[i]) / b[i];
144 d[i] = 2.0 * (b[i] + b[i-1]);
145 }
146
147 d[n-1] = 2.0 * b[n-2];
148
149 // Calculate estimates for the end slopes using polynomials
150 // that interpolate the data_ nearest the end.
151
152 fp1 = c[0] - b[0]*(c[1] - c[0])/(b[0] + b[1]);
153 if (n > 3) fp1 = fp1 + b[0]*((b[0] + b[1]) * (c[2] - c[1]) /
154 (b[1] + b[2]) -
155 c[1] + c[0]) / (x_[3] - x_[0]);
156
157 fpn = c[n-2] + b[n-2]*(c[n-2] - c[n-3])/(b[n-3] + b[n-2]);
158
159 if (n > 3) fpn = fpn + b[n-2] *
160 (c[n-2] - c[n-3] - (b[n-3] + b[n-2]) *
161 (c[n-3] - c[n-4])/(b[n-3] + b[n-4])) /
162 (x_[n-1] - x_[n-4]);
163
164 // Calculate the right hand side and store it in C.
165
166 c[n-1] = 3.0 * (fpn - c[n-2]);
167 for (int i = n-2; i > 0; i--)
168 c[i] = 3.0 * (c[i] - c[i-1]);
169 c[0] = 3.0 * (c[0] - fp1);
170
171 // Solve the tridiagonal system.
172
173 for (int k = 1; k < n; k++) {
174 p = b[k-1] / d[k-1];
175 d[k] = d[k] - p*b[k-1];
176 c[k] = c[k] - p*c[k-1];
177 }
178
179 c[n-1] = c[n-1] / d[n-1];
180
181 for (int k = n-2; k >= 0; k--)
182 c[k] = (c[k] - b[k] * c[k+1]) / d[k];
183
184 // Calculate the coefficients defining the spline.
185
186 for (int i = 0; i < n-1; i++) {
187 h = x_[i+1] - x_[i];
188 d[i] = (c[i+1] - c[i]) / (3.0 * h);
189 b[i] = (y_[i+1] - y_[i])/h - h * (c[i] + h * d[i]);
190 }
191
192 b[n-1] = b[n-2] + h * (2.0 * c[n-2] + h * 3.0 * d[n-2]);
193
194 if (isUniform) dx = 1.0 / (x_[1] - x_[0]);
195
196 generated = true;
197 return;
198 }
199
200 RealType CubicSpline::getValueAt(const RealType& t) {
201 // Evaluate the spline at t using coefficients
202 //
203 // Input parameters
204 // t = point where spline is to be evaluated.
205 // Output:
206 // value of spline at t.
207
208 if (!generated) generate();
209
210 assert(t >= x_.front());
211 assert(t <= x_.back());
212
213 // Find the interval ( x[j], x[j+1] ) that contains or is nearest
214 // to t.
215
216 if (isUniform) {
217
218 j = max(0, min(n-1, int((t - x_[0]) * dx)));
219
220 } else {
221
222 j = n-1;
223
224 for (int i = 0; i < n; i++) {
225 if ( t < x_[i] ) {
226 j = i-1;
227 break;
228 }
229 }
230 }
231
232 // Evaluate the cubic polynomial.
233
234 dt = t - x_[j];
235 return y_[j] + dt*(b[j] + dt*(c[j] + dt*d[j]));
236 }
237
238
239 void CubicSpline::getValueAt(const RealType& t, RealType& v) {
240 // Evaluate the spline at t using coefficients
241 //
242 // Input parameters
243 // t = point where spline is to be evaluated.
244 // Output:
245 // value of spline at t.
246
247 if (!generated) generate();
248
249 assert(t >= x_.front());
250 assert(t <= x_.back());
251
252 // Find the interval ( x[j], x[j+1] ) that contains or is nearest
253 // to t.
254
255 if (isUniform) {
256
257 j = max(0, min(n-1, int((t - x_[0]) * dx)));
258
259 } else {
260
261 j = n-1;
262
263 for (int i = 0; i < n; i++) {
264 if ( t < x_[i] ) {
265 j = i-1;
266 break;
267 }
268 }
269 }
270
271 // Evaluate the cubic polynomial.
272
273 dt = t - x_[j];
274 v = y_[j] + dt*(b[j] + dt*(c[j] + dt*d[j]));
275 }
276
277 pair<RealType, RealType> CubicSpline::getLimits(){
278 if (!generated) generate();
279 return make_pair( x_.front(), x_.back() );
280 }
281
282 void CubicSpline::getValueAndDerivativeAt(const RealType& t, RealType& v,
283 RealType &dv) {
284 // Evaluate the spline and first derivative at t using coefficients
285 //
286 // Input parameters
287 // t = point where spline is to be evaluated.
288
289 if (!generated) generate();
290
291 assert(t >= x_.front());
292 assert(t <= x_.back());
293
294 // Find the interval ( x[j], x[j+1] ) that contains or is nearest
295 // to t.
296
297 if (isUniform) {
298
299 j = max(0, min(n-1, int((t - x_[0]) * dx)));
300
301 } else {
302
303 j = n-1;
304
305 for (int i = 0; i < n; i++) {
306 if ( t < x_[i] ) {
307 j = i-1;
308 break;
309 }
310 }
311 }
312
313 // Evaluate the cubic polynomial.
314
315 dt = t - x_[j];
316
317 v = y_[j] + dt*(b[j] + dt*(c[j] + dt*d[j]));
318 dv = b[j] + dt*(2.0 * c[j] + 3.0 * dt * d[j]);
319 }
320
321 std::vector<int> CubicSpline::sort_permutation(std::vector<RealType>& v) {
322 std::vector<int> p(v.size());
323
324 // 6 lines to replace std::iota(p.begin(), p.end(), 0);
325 int value = 0;
326 std::vector<int>::iterator i;
327 for (i = p.begin(); i != p.end(); ++i) {
328 (*i) = value;
329 ++value;
330 }
331
332 std::sort(p.begin(), p.end(), OpenMD::Comparator(v) );
333 return p;
334 }
335
336 std::vector<RealType> CubicSpline::apply_permutation(std::vector<RealType> const& v,
337 std::vector<int> const& p) {
338 int n = p.size();
339 std::vector<double> sorted_vec(n);
340 for (int i = 0; i < n; ++i) {
341 sorted_vec[i] = v[p[i]];
342 }
343 return sorted_vec;
344 }

Properties

Name Value
svn:eol-style native