1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include "math/CubicSpline.hpp" |
44 |
#include <cmath> |
45 |
#include <cassert> |
46 |
#include <cstdio> |
47 |
#include <algorithm> |
48 |
#include <numeric> |
49 |
|
50 |
using namespace OpenMD; |
51 |
using namespace std; |
52 |
|
53 |
CubicSpline::CubicSpline() : isUniform(true), generated(false) { |
54 |
x_.clear(); |
55 |
y_.clear(); |
56 |
} |
57 |
|
58 |
void CubicSpline::addPoint(const RealType xp, const RealType yp) { |
59 |
x_.push_back(xp); |
60 |
y_.push_back(yp); |
61 |
} |
62 |
|
63 |
void CubicSpline::addPoints(const vector<RealType>& xps, |
64 |
const vector<RealType>& yps) { |
65 |
|
66 |
assert(xps.size() == yps.size()); |
67 |
|
68 |
for (unsigned int i = 0; i < xps.size(); i++){ |
69 |
x_.push_back(xps[i]); |
70 |
y_.push_back(yps[i]); |
71 |
} |
72 |
} |
73 |
|
74 |
void CubicSpline::generate() { |
75 |
// Calculate coefficients defining a smooth cubic interpolatory spline. |
76 |
// |
77 |
// class values constructed: |
78 |
// n = number of data_ points. |
79 |
// x_ = vector of independent variable values |
80 |
// y_ = vector of dependent variable values |
81 |
// b = vector of S'(x_[i]) values. |
82 |
// c = vector of S"(x_[i])/2 values. |
83 |
// d = vector of S'''(x_[i]+)/6 values (i < n). |
84 |
// Local variables: |
85 |
|
86 |
RealType fp1, fpn, p; |
87 |
RealType h(0.0); |
88 |
|
89 |
// make sure the sizes match |
90 |
|
91 |
n = x_.size(); |
92 |
b.resize(n); |
93 |
c.resize(n); |
94 |
d.resize(n); |
95 |
|
96 |
// make sure we are monotonically increasing in x: |
97 |
|
98 |
bool sorted = true; |
99 |
|
100 |
for (int i = 1; i < n; i++) { |
101 |
if ( (x_[i] - x_[i-1] ) <= 0.0 ) sorted = false; |
102 |
} |
103 |
|
104 |
// sort if necessary |
105 |
|
106 |
if (!sorted) { |
107 |
vector<int> p = sort_permutation(x_); |
108 |
x_ = apply_permutation(x_, p); |
109 |
y_ = apply_permutation(y_, p); |
110 |
} |
111 |
|
112 |
|
113 |
// Calculate coefficients for the tridiagonal system: store |
114 |
// sub-diagonal in B, diagonal in D, difference quotient in C. |
115 |
|
116 |
b[0] = x_[1] - x_[0]; |
117 |
c[0] = (y_[1] - y_[0]) / b[0]; |
118 |
|
119 |
if (n == 2) { |
120 |
|
121 |
// Assume the derivatives at both endpoints are zero. Another |
122 |
// assumption could be made to have a linear interpolant between |
123 |
// the two points. In that case, the b coefficients below would be |
124 |
// (y_[1] - y_[0]) / (x_[1] - x_[0]) |
125 |
// and the c and d coefficients would both be zero. |
126 |
b[0] = 0.0; |
127 |
c[0] = -3.0 * pow((y_[1] - y_[0]) / (x_[1] - x_[0]), 2); |
128 |
d[0] = -2.0 * pow((y_[1] - y_[0]) / (x_[1] - x_[0]), 3); |
129 |
b[1] = b[0]; |
130 |
c[1] = 0.0; |
131 |
d[1] = 0.0; |
132 |
dx = 1.0 / (x_[1] - x_[0]); |
133 |
isUniform = true; |
134 |
generated = true; |
135 |
return; |
136 |
} |
137 |
|
138 |
d[0] = 2.0 * b[0]; |
139 |
|
140 |
for (int i = 1; i < n-1; i++) { |
141 |
b[i] = x_[i+1] - x_[i]; |
142 |
if ( fabs( b[i] - b[0] ) / b[0] > 1.0e-5) isUniform = false; |
143 |
c[i] = (y_[i+1] - y_[i]) / b[i]; |
144 |
d[i] = 2.0 * (b[i] + b[i-1]); |
145 |
} |
146 |
|
147 |
d[n-1] = 2.0 * b[n-2]; |
148 |
|
149 |
// Calculate estimates for the end slopes using polynomials |
150 |
// that interpolate the data_ nearest the end. |
151 |
|
152 |
fp1 = c[0] - b[0]*(c[1] - c[0])/(b[0] + b[1]); |
153 |
if (n > 3) fp1 = fp1 + b[0]*((b[0] + b[1]) * (c[2] - c[1]) / |
154 |
(b[1] + b[2]) - |
155 |
c[1] + c[0]) / (x_[3] - x_[0]); |
156 |
|
157 |
fpn = c[n-2] + b[n-2]*(c[n-2] - c[n-3])/(b[n-3] + b[n-2]); |
158 |
|
159 |
if (n > 3) fpn = fpn + b[n-2] * |
160 |
(c[n-2] - c[n-3] - (b[n-3] + b[n-2]) * |
161 |
(c[n-3] - c[n-4])/(b[n-3] + b[n-4])) / |
162 |
(x_[n-1] - x_[n-4]); |
163 |
|
164 |
// Calculate the right hand side and store it in C. |
165 |
|
166 |
c[n-1] = 3.0 * (fpn - c[n-2]); |
167 |
for (int i = n-2; i > 0; i--) |
168 |
c[i] = 3.0 * (c[i] - c[i-1]); |
169 |
c[0] = 3.0 * (c[0] - fp1); |
170 |
|
171 |
// Solve the tridiagonal system. |
172 |
|
173 |
for (int k = 1; k < n; k++) { |
174 |
p = b[k-1] / d[k-1]; |
175 |
d[k] = d[k] - p*b[k-1]; |
176 |
c[k] = c[k] - p*c[k-1]; |
177 |
} |
178 |
|
179 |
c[n-1] = c[n-1] / d[n-1]; |
180 |
|
181 |
for (int k = n-2; k >= 0; k--) |
182 |
c[k] = (c[k] - b[k] * c[k+1]) / d[k]; |
183 |
|
184 |
// Calculate the coefficients defining the spline. |
185 |
|
186 |
for (int i = 0; i < n-1; i++) { |
187 |
h = x_[i+1] - x_[i]; |
188 |
d[i] = (c[i+1] - c[i]) / (3.0 * h); |
189 |
b[i] = (y_[i+1] - y_[i])/h - h * (c[i] + h * d[i]); |
190 |
} |
191 |
|
192 |
b[n-1] = b[n-2] + h * (2.0 * c[n-2] + h * 3.0 * d[n-2]); |
193 |
|
194 |
if (isUniform) dx = 1.0 / (x_[1] - x_[0]); |
195 |
|
196 |
generated = true; |
197 |
return; |
198 |
} |
199 |
|
200 |
RealType CubicSpline::getValueAt(const RealType& t) { |
201 |
// Evaluate the spline at t using coefficients |
202 |
// |
203 |
// Input parameters |
204 |
// t = point where spline is to be evaluated. |
205 |
// Output: |
206 |
// value of spline at t. |
207 |
|
208 |
if (!generated) generate(); |
209 |
|
210 |
assert(t >= x_.front()); |
211 |
assert(t <= x_.back()); |
212 |
|
213 |
// Find the interval ( x[j], x[j+1] ) that contains or is nearest |
214 |
// to t. |
215 |
|
216 |
if (isUniform) { |
217 |
|
218 |
j = max(0, min(n-1, int((t - x_[0]) * dx))); |
219 |
|
220 |
} else { |
221 |
|
222 |
j = n-1; |
223 |
|
224 |
for (int i = 0; i < n; i++) { |
225 |
if ( t < x_[i] ) { |
226 |
j = i-1; |
227 |
break; |
228 |
} |
229 |
} |
230 |
} |
231 |
|
232 |
// Evaluate the cubic polynomial. |
233 |
|
234 |
dt = t - x_[j]; |
235 |
return y_[j] + dt*(b[j] + dt*(c[j] + dt*d[j])); |
236 |
} |
237 |
|
238 |
|
239 |
void CubicSpline::getValueAt(const RealType& t, RealType& v) { |
240 |
// Evaluate the spline at t using coefficients |
241 |
// |
242 |
// Input parameters |
243 |
// t = point where spline is to be evaluated. |
244 |
// Output: |
245 |
// value of spline at t. |
246 |
|
247 |
if (!generated) generate(); |
248 |
|
249 |
assert(t >= x_.front()); |
250 |
assert(t <= x_.back()); |
251 |
|
252 |
// Find the interval ( x[j], x[j+1] ) that contains or is nearest |
253 |
// to t. |
254 |
|
255 |
if (isUniform) { |
256 |
|
257 |
j = max(0, min(n-1, int((t - x_[0]) * dx))); |
258 |
|
259 |
} else { |
260 |
|
261 |
j = n-1; |
262 |
|
263 |
for (int i = 0; i < n; i++) { |
264 |
if ( t < x_[i] ) { |
265 |
j = i-1; |
266 |
break; |
267 |
} |
268 |
} |
269 |
} |
270 |
|
271 |
// Evaluate the cubic polynomial. |
272 |
|
273 |
dt = t - x_[j]; |
274 |
v = y_[j] + dt*(b[j] + dt*(c[j] + dt*d[j])); |
275 |
} |
276 |
|
277 |
pair<RealType, RealType> CubicSpline::getLimits(){ |
278 |
if (!generated) generate(); |
279 |
return make_pair( x_.front(), x_.back() ); |
280 |
} |
281 |
|
282 |
void CubicSpline::getValueAndDerivativeAt(const RealType& t, RealType& v, |
283 |
RealType &dv) { |
284 |
// Evaluate the spline and first derivative at t using coefficients |
285 |
// |
286 |
// Input parameters |
287 |
// t = point where spline is to be evaluated. |
288 |
|
289 |
if (!generated) generate(); |
290 |
|
291 |
assert(t >= x_.front()); |
292 |
assert(t <= x_.back()); |
293 |
|
294 |
// Find the interval ( x[j], x[j+1] ) that contains or is nearest |
295 |
// to t. |
296 |
|
297 |
if (isUniform) { |
298 |
|
299 |
j = max(0, min(n-1, int((t - x_[0]) * dx))); |
300 |
|
301 |
} else { |
302 |
|
303 |
j = n-1; |
304 |
|
305 |
for (int i = 0; i < n; i++) { |
306 |
if ( t < x_[i] ) { |
307 |
j = i-1; |
308 |
break; |
309 |
} |
310 |
} |
311 |
} |
312 |
|
313 |
// Evaluate the cubic polynomial. |
314 |
|
315 |
dt = t - x_[j]; |
316 |
|
317 |
v = y_[j] + dt*(b[j] + dt*(c[j] + dt*d[j])); |
318 |
dv = b[j] + dt*(2.0 * c[j] + 3.0 * dt * d[j]); |
319 |
} |
320 |
|
321 |
std::vector<int> CubicSpline::sort_permutation(std::vector<RealType>& v) { |
322 |
std::vector<int> p(v.size()); |
323 |
|
324 |
// 6 lines to replace std::iota(p.begin(), p.end(), 0); |
325 |
int value = 0; |
326 |
std::vector<int>::iterator i; |
327 |
for (i = p.begin(); i != p.end(); ++i) { |
328 |
(*i) = value; |
329 |
++value; |
330 |
} |
331 |
|
332 |
std::sort(p.begin(), p.end(), OpenMD::Comparator(v) ); |
333 |
return p; |
334 |
} |
335 |
|
336 |
std::vector<RealType> CubicSpline::apply_permutation(std::vector<RealType> const& v, |
337 |
std::vector<int> const& p) { |
338 |
int n = p.size(); |
339 |
std::vector<double> sorted_vec(n); |
340 |
for (int i = 0; i < n; ++i) { |
341 |
sorted_vec[i] = v[p[i]]; |
342 |
} |
343 |
return sorted_vec; |
344 |
} |