1 |
gezelter |
507 |
/* |
2 |
gezelter |
246 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
* |
4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
|
|
* 1. Acknowledgement of the program authors must be made in any |
10 |
|
|
* publication of scientific results based in part on use of the |
11 |
|
|
* program. An acceptable form of acknowledgement is citation of |
12 |
|
|
* the article in which the program was described (Matthew |
13 |
|
|
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
|
|
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
|
|
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
|
|
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
|
|
* |
18 |
|
|
* 2. Redistributions of source code must retain the above copyright |
19 |
|
|
* notice, this list of conditions and the following disclaimer. |
20 |
|
|
* |
21 |
|
|
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
|
|
* notice, this list of conditions and the following disclaimer in the |
23 |
|
|
* documentation and/or other materials provided with the |
24 |
|
|
* distribution. |
25 |
|
|
* |
26 |
|
|
* This software is provided "AS IS," without a warranty of any |
27 |
|
|
* kind. All express or implied conditions, representations and |
28 |
|
|
* warranties, including any implied warranty of merchantability, |
29 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
30 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
31 |
|
|
* be liable for any damages suffered by licensee as a result of |
32 |
|
|
* using, modifying or distributing the software or its |
33 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
34 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
35 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
36 |
|
|
* damages, however caused and regardless of the theory of liability, |
37 |
|
|
* arising out of the use of or inability to use software, even if the |
38 |
|
|
* University of Notre Dame has been advised of the possibility of |
39 |
|
|
* such damages. |
40 |
|
|
*/ |
41 |
|
|
|
42 |
|
|
/** |
43 |
|
|
* @file ChebyshevPolynomials.hpp |
44 |
|
|
* @author teng lin |
45 |
|
|
* @date 11/16/2004 |
46 |
|
|
* @version 1.0 |
47 |
|
|
*/ |
48 |
|
|
|
49 |
|
|
#ifndef MATH_CHEBYSHEVPOLYNOMIALS_HPP |
50 |
|
|
#define MATH_CHEBYSHEVPOLYNOMIALS_HPP |
51 |
|
|
|
52 |
|
|
#include <vector> |
53 |
gezelter |
809 |
#include <cassert> |
54 |
gezelter |
246 |
|
55 |
|
|
#include "math/Polynomial.hpp" |
56 |
|
|
|
57 |
|
|
namespace oopse { |
58 |
|
|
|
59 |
gezelter |
507 |
/** |
60 |
|
|
* @class ChebyshevPolynomials |
61 |
|
|
* A collection of Chebyshev Polynomials. |
62 |
|
|
* @todo document |
63 |
|
|
*/ |
64 |
|
|
class ChebyshevPolynomials { |
65 |
|
|
public: |
66 |
|
|
ChebyshevPolynomials(int maxPower); |
67 |
tim |
749 |
virtual ~ChebyshevPolynomials() {} |
68 |
gezelter |
507 |
/** |
69 |
|
|
* Calculates the value of the nth Chebyshev Polynomial evaluated at the given x value. |
70 |
|
|
* @return The value of the nth Chebyshev Polynomial evaluates at the given x value |
71 |
|
|
* @param n |
72 |
|
|
* @param x the value of the independent variable for the nth Chebyshev Polynomial function |
73 |
|
|
*/ |
74 |
gezelter |
246 |
|
75 |
tim |
963 |
RealType evaluate(int n, RealType x) { |
76 |
gezelter |
507 |
assert (n <= maxPower_ && n >=0); |
77 |
|
|
return polyList_[n].evaluate(x); |
78 |
|
|
} |
79 |
gezelter |
246 |
|
80 |
gezelter |
507 |
/** |
81 |
|
|
* Returns the first derivative of the nth Chebyshev Polynomial. |
82 |
|
|
* @return the first derivative of the nth Chebyshev Polynomial |
83 |
|
|
* @param n |
84 |
|
|
* @param x the value of the independent variable for the nth Chebyshev Polynomial function |
85 |
|
|
*/ |
86 |
tim |
963 |
RealType evaluateDerivative(int n, RealType x) { |
87 |
gezelter |
507 |
assert (n <= maxPower_ && n >=0); |
88 |
|
|
return polyList_[n].evaluateDerivative(x); |
89 |
|
|
} |
90 |
gezelter |
246 |
|
91 |
gezelter |
507 |
/** |
92 |
|
|
* Returns the nth Chebyshev Polynomial |
93 |
|
|
* @return the nth Chebyshev Polynomial |
94 |
|
|
* @param n |
95 |
|
|
*/ |
96 |
|
|
const DoublePolynomial& getChebyshevPolynomial(int n) const { |
97 |
|
|
assert (n <= maxPower_ && n >=0); |
98 |
|
|
return polyList_[n]; |
99 |
|
|
} |
100 |
gezelter |
246 |
|
101 |
gezelter |
507 |
protected: |
102 |
gezelter |
246 |
|
103 |
gezelter |
507 |
std::vector<DoublePolynomial> polyList_; |
104 |
gezelter |
246 |
|
105 |
gezelter |
507 |
private: |
106 |
gezelter |
246 |
|
107 |
gezelter |
507 |
void GeneratePolynomials(int maxPower); |
108 |
|
|
virtual void GenerateFirstTwoTerms() = 0; |
109 |
gezelter |
246 |
|
110 |
gezelter |
507 |
int maxPower_; |
111 |
|
|
}; |
112 |
gezelter |
246 |
|
113 |
gezelter |
507 |
/** |
114 |
|
|
* @class ChebyshevT |
115 |
|
|
* @todo document |
116 |
|
|
*/ |
117 |
|
|
class ChebyshevT : public ChebyshevPolynomials { |
118 |
|
|
public: |
119 |
|
|
ChebyshevT(int maxPower) :ChebyshevPolynomials(maxPower) {} |
120 |
gezelter |
246 |
|
121 |
gezelter |
507 |
private: |
122 |
|
|
virtual void GenerateFirstTwoTerms(); |
123 |
|
|
}; |
124 |
gezelter |
246 |
|
125 |
gezelter |
507 |
/** |
126 |
|
|
* @class ChebyshevU |
127 |
|
|
* @todo document |
128 |
|
|
*/ |
129 |
|
|
class ChebyshevU : public ChebyshevPolynomials { |
130 |
|
|
public: |
131 |
|
|
ChebyshevU(int maxPower) :ChebyshevPolynomials(maxPower) {} |
132 |
gezelter |
246 |
|
133 |
gezelter |
507 |
private: |
134 |
|
|
virtual void GenerateFirstTwoTerms(); |
135 |
|
|
}; |
136 |
gezelter |
246 |
|
137 |
|
|
|
138 |
|
|
} //end namespace oopse |
139 |
|
|
#endif //MATH_CHEBYSHEVPOLYNOMIALS_HPP |