1 |
< |
/* |
1 |
> |
/* |
2 |
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
* |
4 |
|
* The University of Notre Dame grants you ("Licensee") a |
42 |
|
#include "math/ChebyshevPolynomials.hpp" |
43 |
|
|
44 |
|
namespace oopse { |
45 |
< |
ChebyshevPolynomials::ChebyshevPolynomials(int maxPower) : maxPower_(maxPower){ |
45 |
> |
ChebyshevPolynomials::ChebyshevPolynomials(int maxPower) : maxPower_(maxPower){ |
46 |
|
|
47 |
|
assert(maxPower >= 0); |
48 |
|
GeneratePolynomials(maxPower_); |
49 |
< |
} |
49 |
> |
} |
50 |
|
|
51 |
< |
void ChebyshevPolynomials::GeneratePolynomials(int maxPower) { |
51 |
> |
void ChebyshevPolynomials::GeneratePolynomials(int maxPower) { |
52 |
|
|
53 |
|
GenerateFirstTwoTerms(); |
54 |
|
|
58 |
|
//recursive generate the high order term of Chebyshev Polynomials |
59 |
|
//Cn+1(x) = Cn(x) * 2x - Cn-1(x) |
60 |
|
for (int i = 2; i <= maxPower; ++i) { |
61 |
< |
DoublePolynomial cn; |
61 |
> |
DoublePolynomial cn; |
62 |
|
|
63 |
< |
cn = polyList_[i-1] * twoX - polyList_[i-2]; |
64 |
< |
polyList_.push_back(cn); |
63 |
> |
cn = polyList_[i-1] * twoX - polyList_[i-2]; |
64 |
> |
polyList_.push_back(cn); |
65 |
|
} |
66 |
< |
} |
66 |
> |
} |
67 |
|
|
68 |
< |
|
69 |
< |
void ChebyshevT::GenerateFirstTwoTerms() { |
68 |
> |
/* |
69 |
> |
void ChebyshevT::GenerateFirstTwoTerms() { |
70 |
|
DoublePolynomial t0; |
71 |
|
t0.setCoefficient(0, 1.0); |
72 |
|
polyList_.push_back(t0); |
74 |
|
DoublePolynomial t1; |
75 |
|
t1.setCoefficient(1, 1.0); |
76 |
|
polyList_.push_back(t1); |
77 |
< |
} |
77 |
> |
} |
78 |
|
|
79 |
< |
void ChebyshevU::GenerateFirstTwoTerms() { |
79 |
> |
void ChebyshevU::GenerateFirstTwoTerms() { |
80 |
|
DoublePolynomial u0; |
81 |
|
u0.setCoefficient(0, 1.0); |
82 |
|
polyList_.push_back(u0); |
84 |
|
DoublePolynomial u1; |
85 |
|
u1.setCoefficient(1, 2.0); |
86 |
|
polyList_.push_back(u1); |
87 |
< |
} |
87 |
> |
} |
88 |
> |
*/ |
89 |
|
|
90 |
|
} //end namespace oopse |