1 |
/* Copyright (c) 2010 The University of Notre Dame. All Rights Reserved. |
2 |
* |
3 |
* The University of Notre Dame grants you ("Licensee") a |
4 |
* non-exclusive, royalty free, license to use, modify and |
5 |
* redistribute this software in source and binary code form, provided |
6 |
* that the following conditions are met: |
7 |
* |
8 |
* 1. Redistributions of source code must retain the above copyright |
9 |
* notice, this list of conditions and the following disclaimer. |
10 |
* |
11 |
* 2. Redistributions in binary form must reproduce the above copyright |
12 |
* notice, this list of conditions and the following disclaimer in the |
13 |
* documentation and/or other materials provided with the |
14 |
* distribution. |
15 |
* |
16 |
* This software is provided "AS IS," without a warranty of any |
17 |
* kind. All express or implied conditions, representations and |
18 |
* warranties, including any implied warranty of merchantability, |
19 |
* fitness for a particular purpose or non-infringement, are hereby |
20 |
* excluded. The University of Notre Dame and its licensors shall not |
21 |
* be liable for any damages suffered by licensee as a result of |
22 |
* using, modifying or distributing the software or its |
23 |
* derivatives. In no event will the University of Notre Dame or its |
24 |
* licensors be liable for any lost revenue, profit or data, or for |
25 |
* direct, indirect, special, consequential, incidental or punitive |
26 |
* damages, however caused and regardless of the theory of liability, |
27 |
* arising out of the use of or inability to use software, even if the |
28 |
* University of Notre Dame has been advised of the possibility of |
29 |
* such damages. |
30 |
* |
31 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
32 |
* research, please cite the appropriate papers when you publish your |
33 |
* work. Good starting points are: |
34 |
* |
35 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
36 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
37 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
38 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
39 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
40 |
* |
41 |
* AlphaHull.cpp |
42 |
* |
43 |
* Purpose: To calculate an alpha-shape hull. |
44 |
*/ |
45 |
|
46 |
/* Standard includes independent of library */ |
47 |
|
48 |
#include <iostream> |
49 |
#include <fstream> |
50 |
#include <list> |
51 |
#include <algorithm> |
52 |
#include <iterator> |
53 |
#include "math/AlphaHull.hpp" |
54 |
#include "utils/simError.h" |
55 |
|
56 |
#ifdef IS_MPI |
57 |
#include <mpi.h> |
58 |
#endif |
59 |
|
60 |
#include "math/qhull.hpp" |
61 |
|
62 |
#ifdef HAVE_QHULL |
63 |
using namespace std; |
64 |
using namespace OpenMD; |
65 |
|
66 |
double calculate_circumradius(pointT* p0, pointT* p1, pointT* p2, int dim); |
67 |
|
68 |
AlphaHull::AlphaHull(double alpha) : Hull(), dim_(3), alpha_(alpha), |
69 |
options_("qhull d QJ Tcv Pp") { |
70 |
} |
71 |
|
72 |
void AlphaHull::computeHull(vector<StuntDouble*> bodydoubles) { |
73 |
|
74 |
int numpoints = bodydoubles.size(); |
75 |
|
76 |
Triangles_.clear(); |
77 |
|
78 |
vertexT *vertex; |
79 |
facetT *facet, *neighbor; |
80 |
pointT *interiorPoint; |
81 |
int curlong, totlong; |
82 |
|
83 |
|
84 |
vector<double> ptArray(numpoints*dim_); |
85 |
|
86 |
// Copy the positon vector into a points vector for qhull. |
87 |
vector<StuntDouble*>::iterator SD; |
88 |
int i = 0; |
89 |
for (SD =bodydoubles.begin(); SD != bodydoubles.end(); ++SD){ |
90 |
Vector3d pos = (*SD)->getPos(); |
91 |
ptArray[dim_ * i] = pos.x(); |
92 |
ptArray[dim_ * i + 1] = pos.y(); |
93 |
ptArray[dim_ * i + 2] = pos.z(); |
94 |
i++; |
95 |
} |
96 |
|
97 |
/* Clean up memory from previous convex hull calculations*/ |
98 |
boolT ismalloc = False; |
99 |
|
100 |
/* compute the hull for our local points (or all the points for single |
101 |
processor versions) */ |
102 |
if (qh_new_qhull(dim_, numpoints, &ptArray[0], ismalloc, |
103 |
const_cast<char *>(options_.c_str()), NULL, stderr)) { |
104 |
|
105 |
sprintf(painCave.errMsg, "AlphaHull: Qhull failed to compute convex hull"); |
106 |
painCave.isFatal = 1; |
107 |
simError(); |
108 |
|
109 |
} //qh_new_qhull |
110 |
|
111 |
|
112 |
#ifdef IS_MPI |
113 |
//If we are doing the mpi version, set up some vectors for data communication |
114 |
|
115 |
int nproc = MPI::COMM_WORLD.Get_size(); |
116 |
int myrank = MPI::COMM_WORLD.Get_rank(); |
117 |
int localHullSites = 0; |
118 |
|
119 |
vector<int> hullSitesOnProc(nproc, 0); |
120 |
vector<int> coordsOnProc(nproc, 0); |
121 |
vector<int> displacements(nproc, 0); |
122 |
vector<int> vectorDisplacements(nproc, 0); |
123 |
|
124 |
vector<double> coords; |
125 |
vector<double> vels; |
126 |
vector<int> indexMap; |
127 |
vector<double> masses; |
128 |
|
129 |
FORALLvertices{ |
130 |
localHullSites++; |
131 |
|
132 |
int idx = qh_pointid(vertex->point); |
133 |
|
134 |
indexMap.push_back(idx); |
135 |
|
136 |
coords.push_back(ptArray[dim_ * idx]); |
137 |
coords.push_back(ptArray[dim_ * idx + 1]); |
138 |
coords.push_back(ptArray[dim_ * idx + 2]); |
139 |
|
140 |
StuntDouble* sd = bodydoubles[idx]; |
141 |
|
142 |
Vector3d vel = sd->getVel(); |
143 |
vels.push_back(vel.x()); |
144 |
vels.push_back(vel.y()); |
145 |
vels.push_back(vel.z()); |
146 |
|
147 |
masses.push_back(sd->getMass()); |
148 |
} |
149 |
|
150 |
MPI::COMM_WORLD.Allgather(&localHullSites, 1, MPI::INT, &hullSitesOnProc[0], |
151 |
1, MPI::INT); |
152 |
|
153 |
int globalHullSites = 0; |
154 |
for (int iproc = 0; iproc < nproc; iproc++){ |
155 |
globalHullSites += hullSitesOnProc[iproc]; |
156 |
coordsOnProc[iproc] = dim_ * hullSitesOnProc[iproc]; |
157 |
} |
158 |
|
159 |
displacements[0] = 0; |
160 |
vectorDisplacements[0] = 0; |
161 |
|
162 |
for (int iproc = 1; iproc < nproc; iproc++){ |
163 |
displacements[iproc] = displacements[iproc-1] + hullSitesOnProc[iproc-1]; |
164 |
vectorDisplacements[iproc] = vectorDisplacements[iproc-1] + coordsOnProc[iproc-1]; |
165 |
} |
166 |
|
167 |
vector<double> globalCoords(dim_ * globalHullSites); |
168 |
vector<double> globalVels(dim_ * globalHullSites); |
169 |
vector<double> globalMasses(globalHullSites); |
170 |
|
171 |
int count = coordsOnProc[myrank]; |
172 |
|
173 |
MPI::COMM_WORLD.Allgatherv(&coords[0], count, MPI::DOUBLE, &globalCoords[0], |
174 |
&coordsOnProc[0], &vectorDisplacements[0], |
175 |
MPI::DOUBLE); |
176 |
|
177 |
MPI::COMM_WORLD.Allgatherv(&vels[0], count, MPI::DOUBLE, &globalVels[0], |
178 |
&coordsOnProc[0], &vectorDisplacements[0], |
179 |
MPI::DOUBLE); |
180 |
|
181 |
MPI::COMM_WORLD.Allgatherv(&masses[0], localHullSites, MPI::DOUBLE, |
182 |
&globalMasses[0], &hullSitesOnProc[0], |
183 |
&displacements[0], MPI::DOUBLE); |
184 |
|
185 |
// Free previous hull |
186 |
qh_freeqhull(!qh_ALL); |
187 |
qh_memfreeshort(&curlong, &totlong); |
188 |
if (curlong || totlong) { |
189 |
sprintf(painCave.errMsg, "AlphaHull: qhull internal warning:\n" |
190 |
"\tdid not free %d bytes of long memory (%d pieces)", |
191 |
totlong, curlong); |
192 |
painCave.isFatal = 1; |
193 |
simError(); |
194 |
} |
195 |
|
196 |
if (qh_new_qhull(dim_, globalHullSites, &globalCoords[0], ismalloc, |
197 |
const_cast<char *>(options_.c_str()), NULL, stderr)){ |
198 |
|
199 |
sprintf(painCave.errMsg, |
200 |
"AlphaHull: Qhull failed to compute global convex hull"); |
201 |
painCave.isFatal = 1; |
202 |
simError(); |
203 |
|
204 |
} //qh_new_qhull |
205 |
|
206 |
#endif |
207 |
|
208 |
//Set facet->center as the Voronoi center |
209 |
qh_setvoronoi_all(); |
210 |
|
211 |
|
212 |
int convexNumVert = qh_setsize(qh_facetvertices (qh facet_list, NULL, false)); |
213 |
//Insert all the sample points, because, even with alpha=0, the alpha shape/alpha complex will |
214 |
//contain them. |
215 |
|
216 |
// tri::Allocator<CMeshO>::AddVertices(pm.cm,convexNumVert); |
217 |
|
218 |
/*ivp length is 'qh num_vertices' because each vertex is accessed through its ID whose range is |
219 |
0<=qh_pointid(vertex->point)<qh num_vertices*/ |
220 |
// vector<tri::Allocator<CMeshO>::VertexPointer> ivp(qh num_vertices); |
221 |
/*i=0; |
222 |
FORALLvertices{ |
223 |
if ((*vertex).point){ |
224 |
// pm.cm.vert[i].P()[0] = (*vertex).point[0]; |
225 |
// pm.cm.vert[i].P()[1] = (*vertex).point[1]; |
226 |
//pm.cm.vert[i].P()[2] = (*vertex).point[2]; |
227 |
// ivp[qh_pointid(vertex->point)] = &pm.cm.vert[i]; |
228 |
i++; |
229 |
} |
230 |
} |
231 |
*/ |
232 |
//Set of alpha complex triangles for alphashape filtering |
233 |
setT* set= qh_settemp(4* qh num_facets); |
234 |
|
235 |
qh visit_id++; |
236 |
int numFacets=0; |
237 |
vector<vector <int> > facetlist; |
238 |
interiorPoint = qh interior_point; |
239 |
FORALLfacet_(qh facet_list) { |
240 |
numFacets++; |
241 |
if (!facet->upperdelaunay) { |
242 |
//For all facets (that are tetrahedrons)calculate the radius of the empty circumsphere considering |
243 |
//the distance between the circumcenter and a vertex of the facet |
244 |
vertexT* vertex = (vertexT *)(facet->vertices->e[0].p); |
245 |
double* center = facet->center; |
246 |
double radius = qh_pointdist(vertex->point,center,dim_); |
247 |
|
248 |
if (radius>alpha_) // if the facet is not good consider the ridges |
249 |
{ |
250 |
//if calculating the alphashape, unmark the facet ('good' is used as 'marked'). |
251 |
facet->good=false; |
252 |
|
253 |
//Compute each ridge (triangle) once and test the cironference radius with alpha |
254 |
facet->visitid= qh visit_id; |
255 |
qh_makeridges(facet); |
256 |
ridgeT *ridge, **ridgep; |
257 |
int goodTriangles=0; |
258 |
FOREACHridge_(facet->ridges) { |
259 |
neighbor= otherfacet_(ridge, facet); |
260 |
if (( neighbor->visitid != qh visit_id)){ |
261 |
//Calculate the radius of the circumference |
262 |
pointT* p0 = ((vertexT*) (ridge->vertices->e[0].p))->point; |
263 |
pointT* p1 = ((vertexT*) (ridge->vertices->e[1].p))->point; |
264 |
pointT* p2 = ((vertexT*) (ridge->vertices->e[2].p))->point; |
265 |
|
266 |
radius = calculate_circumradius(p0,p1,p2, dim_); |
267 |
|
268 |
if(radius <=alpha_){ |
269 |
goodTriangles++; |
270 |
//save the triangle (ridge) for subsequent filtering |
271 |
qh_setappend(&set, ridge); |
272 |
} |
273 |
} |
274 |
} |
275 |
|
276 |
//If calculating the alphashape, mark the facet('good' is used as 'marked'). |
277 |
//This facet will have some triangles hidden by the facet's neighbor. |
278 |
if(goodTriangles==4) |
279 |
facet->good=true; |
280 |
|
281 |
} |
282 |
else //the facet is good. Put all the triangles of the tetrahedron in the mesh |
283 |
{ |
284 |
//Compute each ridge (triangle) once |
285 |
facet->visitid= qh visit_id; |
286 |
//If calculating the alphashape, mark the facet('good' is used as 'marked'). |
287 |
//This facet will have some triangles hidden by the facet's neighbor. |
288 |
facet->good=true; |
289 |
qh_makeridges(facet); |
290 |
ridgeT *ridge, **ridgep; |
291 |
FOREACHridge_(facet->ridges) { |
292 |
neighbor= otherfacet_(ridge, facet); |
293 |
if ((neighbor->visitid != qh visit_id)){ |
294 |
qh_setappend(&set, ridge); |
295 |
} |
296 |
} |
297 |
} |
298 |
} |
299 |
} |
300 |
//assert(numFacets== qh num_facets); |
301 |
|
302 |
//Filter the triangles (only the ones on the boundary of the alpha complex) and build the mesh |
303 |
|
304 |
int ridgesCount=0; |
305 |
|
306 |
ridgeT *ridge, **ridgep; |
307 |
FOREACHridge_(set) { |
308 |
if ((!ridge->top->good || !ridge->bottom->good || ridge->top->upperdelaunay || ridge->bottom->upperdelaunay)){ |
309 |
// tri::Allocator<CMeshO>::FaceIterator fi=tri::Allocator<CMeshO>::AddFaces(pm.cm,1); |
310 |
ridgesCount++; |
311 |
int vertex_n, vertex_i; |
312 |
Triangle face; |
313 |
|
314 |
// Vector3d V3dNormal(facet->normal[0], facet->normal[1], facet->normal[2]); |
315 |
//face.setNormal(V3dNormal); |
316 |
|
317 |
|
318 |
//coordT *center = qh_getcenter(ridge->vertices); |
319 |
//cout << "Centers are " << center[0] << " " <<center[1] << " " << center[2] << endl; |
320 |
//Vector3d V3dCentroid(center[0], center[1], center[2]); |
321 |
//face.setCentroid(V3dCentroid); |
322 |
|
323 |
|
324 |
Vector3d faceVel = V3Zero; |
325 |
Vector3d p[3]; |
326 |
RealType faceMass = 0.0; |
327 |
|
328 |
int ver = 0; |
329 |
vector<int> virtexlist; |
330 |
FOREACHvertex_i_(ridge->vertices){ |
331 |
int id = qh_pointid(vertex->point); |
332 |
p[ver][0] = vertex->point[0]; |
333 |
p[ver][1] = vertex->point[1]; |
334 |
p[ver][2] = vertex->point[2]; |
335 |
Vector3d vel; |
336 |
RealType mass; |
337 |
ver++; |
338 |
virtexlist.push_back(id); |
339 |
// cout << "Ridge: " << ridgesCount << " Vertex " << id << endl; |
340 |
|
341 |
vel = bodydoubles[id]->getVel(); |
342 |
mass = bodydoubles[id]->getMass(); |
343 |
face.addVertexSD(bodydoubles[id]); |
344 |
|
345 |
|
346 |
faceVel = faceVel + vel; |
347 |
faceMass = faceMass + mass; |
348 |
} //FOREACH Vertex |
349 |
facetlist.push_back(virtexlist); |
350 |
face.addVertices(p[0],p[1],p[2]); |
351 |
face.setFacetMass(faceMass); |
352 |
face.setFacetVelocity(faceVel / RealType(3.0)); |
353 |
|
354 |
RealType area = face.getArea(); |
355 |
area_ += area; |
356 |
Vector3d normal = face.getUnitNormal(); |
357 |
RealType offset = ((0.0-p[0][0])*normal[0] + (0.0-p[0][1])*normal[1] + (0.0-p[0][2])*normal[2]); |
358 |
RealType dist = normal[0] * interiorPoint[0] + normal[1]*interiorPoint[1] + normal[2]*interiorPoint[2]; |
359 |
cout << "Dist and normal and area are: " << normal << endl; |
360 |
volume_ += dist *area/qh hull_dim; |
361 |
|
362 |
Triangles_.push_back(face); |
363 |
} |
364 |
} |
365 |
|
366 |
cout << "Volume is: " << volume_ << endl; |
367 |
|
368 |
//assert(pm.cm.fn == ridgesCount); |
369 |
/* |
370 |
std::cout <<"OFF"<<std::endl; |
371 |
std::cout << bodydoubles.size() << " " << facetlist.size() << " " << 3*facetlist.size() << std::endl; |
372 |
for (SD =bodydoubles.begin(); SD != bodydoubles.end(); ++SD){ |
373 |
Vector3d pos = (*SD)->getPos(); |
374 |
std::cout << pos.x() << " " << pos.y() << " " << pos.z() << std::endl; |
375 |
} |
376 |
|
377 |
|
378 |
std::vector<std::vector<int> >::iterator thisfacet; |
379 |
std::vector<int>::iterator thisvertex; |
380 |
|
381 |
for (thisfacet = facetlist.begin(); thisfacet != facetlist.end(); thisfacet++){ |
382 |
std::cout << (*thisfacet).size(); |
383 |
for (thisvertex = (*thisfacet).begin(); thisvertex != (*thisfacet).end(); thisvertex++){ |
384 |
std::cout << " " << *thisvertex; |
385 |
} |
386 |
std::cout << std::endl; |
387 |
} |
388 |
*/ |
389 |
|
390 |
|
391 |
|
392 |
/* |
393 |
FORALLfacets { |
394 |
Triangle face; |
395 |
|
396 |
Vector3d V3dNormal(facet->normal[0], facet->normal[1], facet->normal[2]); |
397 |
face.setNormal(V3dNormal); |
398 |
|
399 |
RealType faceArea = qh_facetarea(facet); |
400 |
face.setArea(faceArea); |
401 |
|
402 |
vertices = qh_facet3vertex(facet); |
403 |
|
404 |
coordT *center = qh_getcenter(vertices); |
405 |
Vector3d V3dCentroid(center[0], center[1], center[2]); |
406 |
face.setCentroid(V3dCentroid); |
407 |
|
408 |
Vector3d faceVel = V3Zero; |
409 |
Vector3d p[3]; |
410 |
RealType faceMass = 0.0; |
411 |
|
412 |
int ver = 0; |
413 |
|
414 |
FOREACHvertex_(vertices){ |
415 |
int id = qh_pointid(vertex->point); |
416 |
p[ver][0] = vertex->point[0]; |
417 |
p[ver][1] = vertex->point[1]; |
418 |
p[ver][2] = vertex->point[2]; |
419 |
|
420 |
Vector3d vel; |
421 |
RealType mass; |
422 |
|
423 |
#ifdef IS_MPI |
424 |
vel = Vector3d(globalVels[dim_ * id], |
425 |
globalVels[dim_ * id + 1], |
426 |
globalVels[dim_ * id + 2]); |
427 |
mass = globalMasses[id]; |
428 |
|
429 |
// localID will be between 0 and hullSitesOnProc[myrank] if we |
430 |
// own this guy. |
431 |
|
432 |
int localID = id - displacements[myrank]; |
433 |
|
434 |
if (localID >= 0 && localID < hullSitesOnProc[myrank]) |
435 |
face.addVertexSD(bodydoubles[indexMap[localID]]); |
436 |
|
437 |
#else |
438 |
vel = bodydoubles[id]->getVel(); |
439 |
mass = bodydoubles[id]->getMass(); |
440 |
face.addVertexSD(bodydoubles[id]); |
441 |
#endif |
442 |
|
443 |
faceVel = faceVel + vel; |
444 |
faceMass = faceMass + mass; |
445 |
ver++; |
446 |
} //Foreachvertex |
447 |
|
448 |
face.addVertices(p[0], p[1], p[2]); |
449 |
face.setFacetMass(faceMass); |
450 |
face.setFacetVelocity(faceVel/3.0); |
451 |
Triangles_.push_back(face); |
452 |
qh_settempfree(&vertices); |
453 |
|
454 |
} //FORALLfacets |
455 |
*/ |
456 |
// qh_getarea(qh facet_list); |
457 |
//volume_ = qh totvol; |
458 |
// area_ = qh totarea; |
459 |
|
460 |
qh_freeqhull(!qh_ALL); |
461 |
qh_memfreeshort(&curlong, &totlong); |
462 |
if (curlong || totlong) { |
463 |
sprintf(painCave.errMsg, "AlphaHull: qhull internal warning:\n" |
464 |
"\tdid not free %d bytes of long memory (%d pieces)", |
465 |
totlong, curlong); |
466 |
painCave.isFatal = 1; |
467 |
simError(); |
468 |
} |
469 |
} |
470 |
|
471 |
void AlphaHull::printHull(const string& geomFileName) { |
472 |
|
473 |
#ifdef IS_MPI |
474 |
if (worldRank == 0) { |
475 |
#endif |
476 |
FILE *newGeomFile; |
477 |
|
478 |
//create new .md file based on old .md file |
479 |
newGeomFile = fopen(geomFileName.c_str(), "w"); |
480 |
qh_findgood_all(qh facet_list); |
481 |
for (int i = 0; i < qh_PRINTEND; i++) |
482 |
qh_printfacets(newGeomFile, qh PRINTout[i], qh facet_list, NULL, !qh_ALL); |
483 |
|
484 |
fclose(newGeomFile); |
485 |
#ifdef IS_MPI |
486 |
} |
487 |
#endif |
488 |
} |
489 |
|
490 |
double calculate_circumradius(pointT* p0,pointT* p1,pointT* p2, int dim){ |
491 |
coordT a = qh_pointdist(p0,p1,dim); |
492 |
coordT b = qh_pointdist(p1,p2,dim); |
493 |
coordT c = qh_pointdist(p2,p0,dim); |
494 |
|
495 |
coordT sum =(a + b + c)*0.5; |
496 |
coordT area = sum*(a+b-sum)*(a+c-sum)*(b+c-sum); |
497 |
return (double) (a*b*c)/(4*sqrt(area)); |
498 |
} |
499 |
|
500 |
#endif //QHULL |