6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
+ |
#ifdef IS_MPI |
44 |
+ |
#include <mpi.h> |
45 |
+ |
#endif |
46 |
+ |
|
47 |
|
#include <algorithm> |
48 |
|
#include <iostream> |
49 |
|
#include <vector> |
50 |
|
|
46 |
– |
|
51 |
|
#include "io/ZConsWriter.hpp" |
52 |
|
#include "utils/simError.h" |
53 |
|
|
54 |
< |
|
55 |
< |
namespace oopse { |
56 |
< |
ZConsWriter::ZConsWriter(SimInfo* info, const std::string& filename) : info_(info) { |
57 |
< |
//use master - slave mode, only master node writes to disk |
54 |
> |
namespace OpenMD { |
55 |
> |
ZConsWriter::ZConsWriter(SimInfo* info, const std::string& filename) : |
56 |
> |
info_(info) { |
57 |
> |
// use master - slave mode, only master node writes to disk |
58 |
|
#ifdef IS_MPI |
59 |
|
if(worldRank == 0){ |
60 |
|
#endif |
57 |
– |
|
61 |
|
output_.open(filename.c_str()); |
62 |
|
|
63 |
|
if(!output_){ |
64 |
|
sprintf( painCave.errMsg, |
65 |
< |
"Could not open %s for z constrain output_ \n", filename.c_str()); |
65 |
> |
"Could not open %s for z constrain output_ \n", |
66 |
> |
filename.c_str()); |
67 |
|
painCave.isFatal = 1; |
68 |
|
simError(); |
69 |
|
} |
70 |
|
|
71 |
|
output_ << "//time(fs)" << std::endl; |
72 |
|
output_ << "//number of fixed z-constrain molecules" << std::endl; |
73 |
< |
output_ << "//global Index of molecule\tzconstrain force\tcurrentZPos" << std::endl; |
74 |
< |
|
73 |
> |
output_ << "//global Index of molecule\tzconstrain force\tcurrentZPos" |
74 |
> |
<< std::endl; |
75 |
|
#ifdef IS_MPI |
76 |
|
} |
77 |
< |
#endif |
74 |
< |
|
77 |
> |
#endif |
78 |
|
} |
79 |
< |
|
79 |
> |
|
80 |
|
ZConsWriter::~ZConsWriter() |
81 |
|
{ |
82 |
< |
|
82 |
> |
|
83 |
|
#ifdef IS_MPI |
84 |
|
if(worldRank == 0 ){ |
85 |
|
#endif |
91 |
|
|
92 |
|
void ZConsWriter::writeFZ(const std::list<ZconstraintMol>& fixedZmols){ |
93 |
|
#ifndef IS_MPI |
94 |
< |
output_ << info_->getSnapshotManager()->getCurrentSnapshot()->getTime() << std::endl; |
94 |
> |
output_ << info_->getSnapshotManager()->getCurrentSnapshot()->getTime() |
95 |
> |
<< std::endl; |
96 |
|
output_ << fixedZmols.size() << std::endl; |
97 |
|
|
98 |
|
std::list<ZconstraintMol>::const_iterator i; |
99 |
|
for ( i = fixedZmols.begin(); i != fixedZmols.end(); ++i) { |
100 |
< |
output_ << i->mol->getGlobalIndex() <<"\t" << i->fz << "\t" << i->zpos << "\t" << i->param.zTargetPos <<std::endl; |
100 |
> |
output_ << i->mol->getGlobalIndex() <<"\t" << i->fz << "\t" << i->zpos |
101 |
> |
<< "\t" << i->param.zTargetPos <<std::endl; |
102 |
|
} |
103 |
|
#else |
104 |
< |
int nproc; |
100 |
< |
MPI_Comm_size(MPI_COMM_WORLD, &nproc); |
104 |
> |
|
105 |
|
const int masterNode = 0; |
106 |
< |
int myNode = worldRank; |
106 |
> |
int nproc; |
107 |
> |
int myNode; |
108 |
> |
MPI_Comm_size( MPI_COMM_WORLD, &nproc); |
109 |
> |
MPI_Comm_rank( MPI_COMM_WORLD, &myNode); |
110 |
> |
|
111 |
|
std::vector<int> tmpNFixedZmols(nproc, 0); |
112 |
|
std::vector<int> nFixedZmolsInProc(nproc, 0); |
113 |
|
tmpNFixedZmols[myNode] = fixedZmols.size(); |
114 |
|
|
115 |
< |
//do MPI_ALLREDUCE to exchange the total number of atoms, rigidbodies and cutoff groups |
116 |
< |
MPI_Allreduce(&tmpNFixedZmols[0], &nFixedZmolsInProc[0], nproc, MPI_INT, |
117 |
< |
MPI_SUM, MPI_COMM_WORLD); |
118 |
< |
|
119 |
< |
MPI_Status ierr; |
115 |
> |
//do MPI_ALLREDUCE to exchange the total number of atoms, |
116 |
> |
//rigidbodies and cutoff groups |
117 |
> |
MPI_Allreduce(&tmpNFixedZmols[0], &nFixedZmolsInProc[0], |
118 |
> |
nproc, MPI_INT, MPI_SUM, MPI_COMM_WORLD); |
119 |
> |
|
120 |
> |
MPI_Status* ierr = NULL; |
121 |
|
int zmolIndex; |
122 |
|
RealType data[3]; |
123 |
|
|
124 |
< |
if (masterNode == 0) { |
125 |
< |
|
124 |
> |
if (myNode == masterNode) { |
125 |
> |
|
126 |
|
std::vector<ZconsData> zconsData; |
127 |
|
ZconsData tmpData; |
128 |
|
for(int i =0 ; i < nproc; ++i) { |
135 |
|
tmpData.zconsPos = j->param.zTargetPos; |
136 |
|
zconsData.push_back(tmpData); |
137 |
|
} |
138 |
< |
|
138 |
> |
|
139 |
|
} else { |
140 |
|
for(int k =0 ; k < nFixedZmolsInProc[i]; ++k) { |
141 |
< |
MPI_Recv(&zmolIndex, 1, MPI_INT, i, 0, MPI_COMM_WORLD,&ierr); |
142 |
< |
MPI_Recv(data, 3, MPI_REALTYPE, i, 0, MPI_COMM_WORLD,&ierr); |
141 |
> |
MPI_Recv(&zmolIndex, 1, MPI_INT, i, 0, MPI_COMM_WORLD, ierr); |
142 |
> |
MPI_Recv(data, 3, MPI_REALTYPE, i, 0, MPI_COMM_WORLD, ierr); |
143 |
|
tmpData.zmolIndex = zmolIndex; |
144 |
|
tmpData.zforce= data[0]; |
145 |
|
tmpData.zpos = data[1]; |
146 |
|
tmpData.zconsPos = data[2]; |
147 |
< |
zconsData.push_back(tmpData); |
147 |
> |
zconsData.push_back(tmpData); |
148 |
|
} |
149 |
< |
} |
141 |
< |
|
149 |
> |
} |
150 |
|
} |
151 |
|
|
152 |
< |
|
153 |
< |
output_ << info_->getSnapshotManager()->getCurrentSnapshot()->getTime() << std::endl; |
152 |
> |
output_ << info_->getSnapshotManager()->getCurrentSnapshot()->getTime() |
153 |
> |
<< std::endl; |
154 |
|
output_ << zconsData.size() << std::endl; |
155 |
|
|
156 |
|
std::vector<ZconsData>::iterator l; |
157 |
|
for (l = zconsData.begin(); l != zconsData.end(); ++l) { |
158 |
< |
output_ << l->zmolIndex << "\t" << l->zforce << "\t" << l->zpos << "\t" << l->zconsPos << std::endl; |
158 |
> |
output_ << l->zmolIndex << "\t" << l->zforce << "\t" << l->zpos |
159 |
> |
<< "\t" << l->zconsPos << std::endl; |
160 |
|
} |
161 |
< |
|
161 |
> |
|
162 |
|
} else { |
163 |
< |
|
163 |
> |
|
164 |
|
std::list<ZconstraintMol>::const_iterator j; |
165 |
|
for (j = fixedZmols.begin(); j != fixedZmols.end(); ++j) { |
166 |
|
zmolIndex = j->mol->getGlobalIndex(); |
167 |
|
data[0] = j->fz; |
168 |
|
data[1] = j->zpos; |
169 |
|
data[2] = j->param.zTargetPos; |
170 |
< |
MPI_Send(&zmolIndex, 1, MPI_INT, masterNode, 0, MPI_COMM_WORLD); |
171 |
< |
MPI_Send(data, 3, MPI_REALTYPE, masterNode, 0, MPI_COMM_WORLD); |
163 |
< |
|
170 |
> |
MPI_Send(&zmolIndex, 1, MPI_INT, masterNode, 0, MPI_COMM_WORLD); |
171 |
> |
MPI_Send(data, 3, MPI_REALTYPE, masterNode, 0, MPI_COMM_WORLD); |
172 |
|
} |
173 |
|
} |
174 |
|
#endif |
175 |
|
} |
168 |
– |
|
176 |
|
} |