1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Acknowledgement of the program authors must be made in any |
10 |
* publication of scientific results based in part on use of the |
11 |
* program. An acceptable form of acknowledgement is citation of |
12 |
* the article in which the program was described (Matthew |
13 |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
* |
18 |
* 2. Redistributions of source code must retain the above copyright |
19 |
* notice, this list of conditions and the following disclaimer. |
20 |
* |
21 |
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
* notice, this list of conditions and the following disclaimer in the |
23 |
* documentation and/or other materials provided with the |
24 |
* distribution. |
25 |
* |
26 |
* This software is provided "AS IS," without a warranty of any |
27 |
* kind. All express or implied conditions, representations and |
28 |
* warranties, including any implied warranty of merchantability, |
29 |
* fitness for a particular purpose or non-infringement, are hereby |
30 |
* excluded. The University of Notre Dame and its licensors shall not |
31 |
* be liable for any damages suffered by licensee as a result of |
32 |
* using, modifying or distributing the software or its |
33 |
* derivatives. In no event will the University of Notre Dame or its |
34 |
* licensors be liable for any lost revenue, profit or data, or for |
35 |
* direct, indirect, special, consequential, incidental or punitive |
36 |
* damages, however caused and regardless of the theory of liability, |
37 |
* arising out of the use of or inability to use software, even if the |
38 |
* University of Notre Dame has been advised of the possibility of |
39 |
* such damages. |
40 |
*/ |
41 |
|
42 |
#include "io/RestWriter.hpp" |
43 |
#include "primitives/Molecule.hpp" |
44 |
#include "utils/simError.h" |
45 |
#include "io/basic_teebuf.hpp" |
46 |
|
47 |
#ifdef IS_MPI |
48 |
#include <mpi.h> |
49 |
#define TAKE_THIS_TAG_INT 1 |
50 |
#define TAKE_THIS_TAG_REAL 2 |
51 |
#endif //is_mpi |
52 |
|
53 |
namespace oopse { |
54 |
RestWriter::RestWriter(SimInfo* info) : |
55 |
info_(info), outName_(info_->getRestFileName()) { |
56 |
} |
57 |
|
58 |
RestWriter::~RestWriter() {} |
59 |
|
60 |
void RestWriter::writeZAngFile() { |
61 |
std::ostream* zangStream; |
62 |
|
63 |
#ifdef IS_MPI |
64 |
if (worldRank == 0) { |
65 |
#endif // is_mpi |
66 |
|
67 |
zangStream = new std::ofstream(outName_.c_str()); |
68 |
|
69 |
#ifdef IS_MPI |
70 |
} |
71 |
#endif // is_mpi |
72 |
|
73 |
writeZangle(*zangStream); |
74 |
|
75 |
#ifdef IS_MPI |
76 |
if (worldRank == 0) { |
77 |
#endif // is_mpi |
78 |
delete zangStream; |
79 |
|
80 |
#ifdef IS_MPI |
81 |
} |
82 |
#endif // is_mpi |
83 |
|
84 |
} |
85 |
|
86 |
void RestWriter::writeZangle(std::ostream& finalOut){ |
87 |
const int BUFFERSIZE = 2000; |
88 |
char tempBuffer[BUFFERSIZE]; |
89 |
char writeLine[BUFFERSIZE]; |
90 |
|
91 |
Molecule* mol; |
92 |
StuntDouble* integrableObject; |
93 |
SimInfo::MoleculeIterator mi; |
94 |
Molecule::IntegrableObjectIterator ii; |
95 |
|
96 |
#ifndef IS_MPI |
97 |
// first we do output for the single processor version |
98 |
finalOut |
99 |
<< info_->getSnapshotManager()->getCurrentSnapshot()->getTime() |
100 |
<< " : omega values at this time\n"; |
101 |
|
102 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
103 |
mol = info_->nextMolecule(mi)) { |
104 |
|
105 |
for (integrableObject = mol->beginIntegrableObject(ii); |
106 |
integrableObject != NULL; |
107 |
integrableObject = mol->nextIntegrableObject(ii)) { |
108 |
|
109 |
sprintf( tempBuffer, |
110 |
"%14.10lf\n", |
111 |
integrableObject->getZangle()); |
112 |
strcpy( writeLine, tempBuffer ); |
113 |
|
114 |
finalOut << writeLine; |
115 |
|
116 |
} |
117 |
} |
118 |
|
119 |
#else |
120 |
int nproc; |
121 |
MPI_Comm_size(MPI_COMM_WORLD, &nproc); |
122 |
const int masterNode = 0; |
123 |
|
124 |
MPI_Status ierr; |
125 |
int intObIndex; |
126 |
int vecLength; |
127 |
RealType zAngle; |
128 |
std::vector<int> gIndex; |
129 |
std::vector<RealType> zValues; |
130 |
|
131 |
if (worldRank == masterNode) { |
132 |
std::map<int, RealType> zAngData; |
133 |
for(int i = 0 ; i < nproc; ++i) { |
134 |
if (i == masterNode) { |
135 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
136 |
mol = info_->nextMolecule(mi)) { |
137 |
|
138 |
for (integrableObject = mol->beginIntegrableObject(ii); |
139 |
integrableObject != NULL; |
140 |
integrableObject = mol->nextIntegrableObject(ii)) { |
141 |
|
142 |
intObIndex = integrableObject->getGlobalIndex(); |
143 |
|
144 |
zAngle = integrableObject->getZangle(); |
145 |
zAngData.insert(std::pair<int, RealType>(intObIndex, zAngle)); |
146 |
} |
147 |
} |
148 |
} else { |
149 |
MPI_Recv(&vecLength, 1, MPI_INT, i, |
150 |
TAKE_THIS_TAG_INT, MPI_COMM_WORLD, &ierr); |
151 |
// make sure the vectors are the right size for the incoming data |
152 |
gIndex.resize(vecLength); |
153 |
zValues.resize(vecLength); |
154 |
|
155 |
MPI_Recv(&gIndex[0], vecLength, MPI_INT, i, |
156 |
TAKE_THIS_TAG_INT, MPI_COMM_WORLD, &ierr); |
157 |
MPI_Recv(&zValues[0], vecLength, MPI_REALTYPE, i, |
158 |
TAKE_THIS_TAG_REAL, MPI_COMM_WORLD, &ierr); |
159 |
|
160 |
for (int k = 0; k < vecLength; k++){ |
161 |
zAngData.insert(std::pair<int, RealType>(gIndex[k], zValues[k])); |
162 |
} |
163 |
gIndex.clear(); |
164 |
zValues.clear(); |
165 |
} |
166 |
} |
167 |
|
168 |
finalOut << info_->getSnapshotManager()->getCurrentSnapshot()->getTime() |
169 |
<< " : omega values at this time\n"; |
170 |
|
171 |
std::map<int, RealType>::iterator l; |
172 |
for (l = zAngData.begin(); l != zAngData.end(); ++l) { |
173 |
|
174 |
sprintf( tempBuffer, |
175 |
"%14.10lf\n", |
176 |
l->second); |
177 |
strcpy( writeLine, tempBuffer ); |
178 |
|
179 |
finalOut << writeLine; |
180 |
} |
181 |
|
182 |
} else { |
183 |
// pack up and send the appropriate info to the master node |
184 |
for(int j = 1; j < nproc; ++j) { |
185 |
if (worldRank == j) { |
186 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
187 |
mol = info_->nextMolecule(mi)) { |
188 |
|
189 |
for (integrableObject = mol->beginIntegrableObject(ii); |
190 |
integrableObject != NULL; |
191 |
integrableObject = mol->nextIntegrableObject(ii)) { |
192 |
|
193 |
// build a vector of the indicies |
194 |
intObIndex = integrableObject->getGlobalIndex(); |
195 |
gIndex.push_back(intObIndex); |
196 |
|
197 |
// build a vector of the zAngle values |
198 |
zAngle = integrableObject->getZangle(); |
199 |
zValues.push_back(zAngle); |
200 |
|
201 |
} |
202 |
} |
203 |
|
204 |
// let's send these vectors to the master node so that it |
205 |
// can sort them and write to the disk |
206 |
vecLength = gIndex.size(); |
207 |
|
208 |
MPI_Send(&vecLength, 1, MPI_INT, masterNode, |
209 |
TAKE_THIS_TAG_INT, MPI_COMM_WORLD); |
210 |
MPI_Send(&gIndex[0], vecLength, MPI_INT, masterNode, |
211 |
TAKE_THIS_TAG_INT, MPI_COMM_WORLD); |
212 |
MPI_Send(&zValues[0], vecLength, MPI_REALTYPE, masterNode, |
213 |
TAKE_THIS_TAG_REAL, MPI_COMM_WORLD); |
214 |
|
215 |
} |
216 |
} |
217 |
} |
218 |
|
219 |
#endif |
220 |
} |
221 |
|
222 |
} |