ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/io/DumpWriter.cpp
(Generate patch)

Comparing trunk/src/io/DumpWriter.cpp (file contents):
Revision 3 by tim, Fri Sep 24 16:27:58 2004 UTC vs.
Revision 1969 by gezelter, Wed Feb 26 14:14:50 2014 UTC

# Line 1 | Line 1
1 < #define _LARGEFILE_SOURCE64
2 < #define _FILE_OFFSET_BITS 64
1 > /*
2 > * Copyright (c) 2009 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 > */
42  
43 < #include <string.h>
5 < #include <iostream>
6 < #include <fstream>
7 < #include <algorithm>
8 < #include <utility>
43 > #include "config.h"
44  
45   #ifdef IS_MPI
46   #include <mpi.h>
47 < #include "brains/mpiSimulation.hpp"
47 > #endif
48 >
49 > #include "io/DumpWriter.hpp"
50 > #include "primitives/Molecule.hpp"
51 > #include "utils/simError.h"
52 > #include "io/basic_teebuf.hpp"
53 > #ifdef HAVE_ZLIB
54 > #include "io/gzstream.hpp"
55 > #endif
56 > #include "io/Globals.hpp"
57  
58 < namespace dWrite{
59 <  void DieDieDie( void );
60 < }
58 > #ifdef _MSC_VER
59 > #define isnan(x) _isnan((x))
60 > #define isinf(x) (!_finite(x) && !_isnan(x))
61 > #endif
62  
63 < using namespace dWrite;
64 < #endif //is_mpi
63 > using namespace std;
64 > namespace OpenMD {
65  
66 < #include "io/ReadWrite.hpp"
67 < #include "utils/simError.h"
66 >  DumpWriter::DumpWriter(SimInfo* info)
67 >    : info_(info), filename_(info->getDumpFileName()), eorFilename_(info->getFinalConfigFileName()){
68  
69 < DumpWriter::DumpWriter( SimInfo* the_entry_plug ){
69 >    Globals* simParams = info->getSimParams();
70 >    needCompression_   = simParams->getCompressDumpFile();
71 >    needForceVector_   = simParams->getOutputForceVector();
72 >    needParticlePot_   = simParams->getOutputParticlePotential();
73 >    needFlucQ_         = simParams->getOutputFluctuatingCharges();
74 >    needElectricField_ = simParams->getOutputElectricField();
75  
76 <  entry_plug = the_entry_plug;
76 >    if (needParticlePot_ || needFlucQ_ || needElectricField_) {
77 >      doSiteData_ = true;
78 >    } else {
79 >      doSiteData_ = false;
80 >    }
81  
82 +    createDumpFile_ = true;
83 + #ifdef HAVE_LIBZ
84 +    if (needCompression_) {
85 +      filename_ += ".gz";
86 +      eorFilename_ += ".gz";
87 +    }
88 + #endif
89 +    
90   #ifdef IS_MPI
91 <  if(worldRank == 0 ){
91 >
92 >    if (worldRank == 0) {
93   #endif // is_mpi
94 +        
95 +      dumpFile_ = createOStream(filename_);
96  
97 <    dumpFile.open(entry_plug->sampleName.c_str(), ios::out | ios::trunc );
97 >      if (!dumpFile_) {
98 >        sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
99 >                filename_.c_str());
100 >        painCave.isFatal = 1;
101 >        simError();
102 >      }
103  
104 <    if( !dumpFile ){
104 > #ifdef IS_MPI
105  
36      sprintf( painCave.errMsg,
37               "Could not open \"%s\" for dump output.\n",
38               entry_plug->sampleName.c_str());
39      painCave.isFatal = 1;
40      simError();
106      }
107  
108 < #ifdef IS_MPI
108 > #endif // is_mpi
109 >
110    }
111  
46  //sort the local atoms by global index
47  sortByGlobalIndex();
48  
49  sprintf( checkPointMsg,
50           "Sucessfully opened output file for dumping.\n");
51  MPIcheckPoint();
52 #endif // is_mpi
53 }
112  
113 < DumpWriter::~DumpWriter( ){
113 >  DumpWriter::DumpWriter(SimInfo* info, const std::string& filename)
114 >    : info_(info), filename_(filename){
115  
116 < #ifdef IS_MPI
117 <  if(worldRank == 0 ){
59 < #endif // is_mpi
116 >    Globals* simParams = info->getSimParams();
117 >    eorFilename_ = filename_.substr(0, filename_.rfind(".")) + ".eor";    
118  
119 <    dumpFile.close();
119 >    needCompression_   = simParams->getCompressDumpFile();
120 >    needForceVector_   = simParams->getOutputForceVector();
121 >    needParticlePot_   = simParams->getOutputParticlePotential();
122 >    needFlucQ_         = simParams->getOutputFluctuatingCharges();
123 >    needElectricField_ = simParams->getOutputElectricField();
124  
125 +    if (needParticlePot_ || needFlucQ_ || needElectricField_) {
126 +      doSiteData_ = true;
127 +    } else {
128 +      doSiteData_ = false;
129 +    }
130 +
131 +    createDumpFile_ = true;
132 + #ifdef HAVE_LIBZ
133 +    if (needCompression_) {
134 +      filename_ += ".gz";
135 +      eorFilename_ += ".gz";
136 +    }
137 + #endif
138 +    
139   #ifdef IS_MPI
140 <  }
140 >
141 >    if (worldRank == 0) {
142   #endif // is_mpi
66 }
143  
144 +      
145 +      dumpFile_ = createOStream(filename_);
146 +
147 +      if (!dumpFile_) {
148 +        sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
149 +                filename_.c_str());
150 +        painCave.isFatal = 1;
151 +        simError();
152 +      }
153 +
154   #ifdef IS_MPI
155  
156 < /**
71 < * A hook function to load balancing
72 < */
156 >    }
157  
158 < void DumpWriter::update(){
75 <  sortByGlobalIndex();          
76 < }
77 <  
78 < /**
79 < * Auxiliary sorting function
80 < */
81 <
82 < bool indexSortingCriterion(const pair<int, int>& p1, const pair<int, int>& p2){
83 <  return p1.second < p2.second;
84 < }
158 > #endif // is_mpi
159  
160 < /**
87 < * Sorting the local index by global index
88 < */
89 <
90 < void DumpWriter::sortByGlobalIndex(){
91 <  Molecule* mols = entry_plug->molecules;  
92 <  indexArray.clear();
160 >  }
161    
162 <  for(int i = 0; i < entry_plug->n_mol;i++)
163 <    indexArray.push_back(make_pair(i, mols[i].getGlobalIndex()));
164 <  
165 <  sort(indexArray.begin(), indexArray.end(), indexSortingCriterion);    
166 < }
162 >  DumpWriter::DumpWriter(SimInfo* info, const std::string& filename, bool writeDumpFile)
163 >    : info_(info), filename_(filename){
164 >    
165 >    Globals* simParams = info->getSimParams();
166 >    eorFilename_ = filename_.substr(0, filename_.rfind(".")) + ".eor";    
167 >    
168 >    needCompression_   = simParams->getCompressDumpFile();
169 >    needForceVector_   = simParams->getOutputForceVector();
170 >    needParticlePot_   = simParams->getOutputParticlePotential();
171 >    needFlucQ_         = simParams->getOutputFluctuatingCharges();
172 >    needElectricField_ = simParams->getOutputElectricField();
173  
174 < #endif
174 >    if (needParticlePot_ || needFlucQ_ || needElectricField_) {
175 >      doSiteData_ = true;
176 >    } else {
177 >      doSiteData_ = false;
178 >    }
179  
180 < void DumpWriter::writeDump(double currentTime){
181 <
182 <  ofstream finalOut;
183 <  vector<ofstream*> fileStreams;
106 <
107 < #ifdef IS_MPI
108 <  if(worldRank == 0 ){
109 < #endif    
110 <    finalOut.open( entry_plug->finalName.c_str(), ios::out | ios::trunc );
111 <    if( !finalOut ){
112 <      sprintf( painCave.errMsg,
113 <               "Could not open \"%s\" for final dump output.\n",
114 <               entry_plug->finalName.c_str() );
115 <      painCave.isFatal = 1;
116 <      simError();
180 > #ifdef HAVE_LIBZ
181 >    if (needCompression_) {
182 >      filename_ += ".gz";
183 >      eorFilename_ += ".gz";
184      }
185 + #endif
186 +    
187   #ifdef IS_MPI
188 <  }
188 >    
189 >    if (worldRank == 0) {
190   #endif // is_mpi
191 +      
192 +      createDumpFile_ = writeDumpFile;
193 +      if (createDumpFile_) {
194 +        dumpFile_ = createOStream(filename_);
195 +      
196 +        if (!dumpFile_) {
197 +          sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
198 +                  filename_.c_str());
199 +          painCave.isFatal = 1;
200 +          simError();
201 +        }
202 +      }
203 + #ifdef IS_MPI
204 +      
205 +    }
206  
207 <  fileStreams.push_back(&finalOut);
208 <  fileStreams.push_back(&dumpFile);
207 >    
208 > #endif // is_mpi
209 >    
210 >  }
211  
212 <  writeFrame(fileStreams, currentTime);
212 >  DumpWriter::~DumpWriter() {
213  
214   #ifdef IS_MPI
128  finalOut.close();
129 #endif
130        
131 }
215  
216 < void DumpWriter::writeFinal(double currentTime){
216 >    if (worldRank == 0) {
217 > #endif // is_mpi
218 >      if (createDumpFile_){
219 >        writeClosing(*dumpFile_);
220 >        delete dumpFile_;
221 >      }
222 > #ifdef IS_MPI
223  
224 <  ofstream finalOut;
136 <  vector<ofstream*> fileStreams;
224 >    }
225  
138 #ifdef IS_MPI
139  if(worldRank == 0 ){
226   #endif // is_mpi
227  
228 <    finalOut.open( entry_plug->finalName.c_str(), ios::out | ios::trunc );
228 >  }
229  
230 <    if( !finalOut ){
230 >  void DumpWriter::writeFrameProperties(std::ostream& os, Snapshot* s) {
231 >
232 >    char buffer[1024];
233 >
234 >    os << "    <FrameData>\n";
235 >
236 >    RealType currentTime = s->getTime();
237 >
238 >    if (isinf(currentTime) || isnan(currentTime)) {      
239        sprintf( painCave.errMsg,
240 <               "Could not open \"%s\" for final dump output.\n",
147 <               entry_plug->finalName.c_str() );
240 >               "DumpWriter detected a numerical error writing the time");      
241        painCave.isFatal = 1;
242        simError();
243      }
244 +    
245 +    sprintf(buffer, "        Time: %.10g\n", currentTime);
246 +    os << buffer;
247  
248 < #ifdef IS_MPI
249 <  }
154 < #endif // is_mpi
155 <  
156 <  fileStreams.push_back(&finalOut);  
157 <  writeFrame(fileStreams, currentTime);
248 >    Mat3x3d hmat;
249 >    hmat = s->getHmat();
250  
251 < #ifdef IS_MPI
252 <  finalOut.close();
253 < #endif
254 <  
255 < }
251 >    for (unsigned int i = 0; i < 3; i++) {
252 >      for (unsigned int j = 0; j < 3; j++) {
253 >        if (isinf(hmat(i,j)) || isnan(hmat(i,j))) {      
254 >          sprintf( painCave.errMsg,
255 >                   "DumpWriter detected a numerical error writing the box");
256 >          painCave.isFatal = 1;
257 >          simError();
258 >        }        
259 >      }
260 >    }
261 >    
262 >    sprintf(buffer, "        Hmat: {{ %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }}\n",
263 >            hmat(0, 0), hmat(1, 0), hmat(2, 0),
264 >            hmat(0, 1), hmat(1, 1), hmat(2, 1),
265 >            hmat(0, 2), hmat(1, 2), hmat(2, 2));
266 >    os << buffer;
267  
268 < void DumpWriter::writeFrame( vector<ofstream*>& outFile, double currentTime ){
268 >    pair<RealType, RealType> thermostat = s->getThermostat();
269  
270 <  const int BUFFERSIZE = 2000;
271 <  const int MINIBUFFERSIZE = 100;
270 >    if (isinf(thermostat.first)  || isnan(thermostat.first) ||
271 >        isinf(thermostat.second) || isnan(thermostat.second)) {      
272 >      sprintf( painCave.errMsg,
273 >               "DumpWriter detected a numerical error writing the thermostat");
274 >      painCave.isFatal = 1;
275 >      simError();
276 >    }
277 >    sprintf(buffer, "  Thermostat: %.10g , %.10g\n", thermostat.first,
278 >            thermostat.second);
279 >    os << buffer;
280  
281 <  char tempBuffer[BUFFERSIZE];  
282 <  char writeLine[BUFFERSIZE];
281 >    Mat3x3d eta;
282 >    eta = s->getBarostat();
283  
284 <  int i;
285 <  unsigned int k;
286 <
287 < #ifdef IS_MPI
288 <  
289 <  /*********************************************************************
290 <   * Documentation?  You want DOCUMENTATION?
291 <   *
181 <   * Why all the potatoes below?  
182 <   *
183 <   * To make a long story short, the original version of DumpWriter
184 <   * worked in the most inefficient way possible.  Node 0 would
185 <   * poke each of the node for an individual atom's formatted data
186 <   * as node 0 worked its way down the global index. This was particularly
187 <   * inefficient since the method blocked all processors at every atom
188 <   * (and did it twice!).
189 <   *
190 <   * An intermediate version of DumpWriter could be described from Node
191 <   * zero's perspective as follows:
192 <   *
193 <   *  1) Have 100 of your friends stand in a circle.
194 <   *  2) When you say go, have all of them start tossing potatoes at
195 <   *     you (one at a time).
196 <   *  3) Catch the potatoes.
197 <   *
198 <   * It was an improvement, but MPI has buffers and caches that could
199 <   * best be described in this analogy as "potato nets", so there's no
200 <   * need to block the processors atom-by-atom.
201 <   *
202 <   * This new and improved DumpWriter works in an even more efficient
203 <   * way:
204 <   *
205 <   *  1) Have 100 of your friend stand in a circle.
206 <   *  2) When you say go, have them start tossing 5-pound bags of
207 <   *     potatoes at you.
208 <   *  3) Once you've caught a friend's bag of potatoes,
209 <   *     toss them a spud to let them know they can toss another bag.
210 <   *
211 <   * How's THAT for documentation?
212 <   *
213 <   *********************************************************************/
214 <
215 <  int *potatoes;
216 <  int myPotato;
217 <
218 <  int nProc;
219 <  int j, which_node, done, which_atom, local_index, currentIndex;
220 <  double atomData[13];
221 <  int isDirectional;
222 <  char* atomTypeString;
223 <  char MPIatomTypeString[MINIBUFFERSIZE];
224 <  int nObjects;
225 <  int msgLen; // the length of message actually recieved at master nodes
226 < #endif //is_mpi
227 <
228 <  double q[4], ji[3];
229 <  DirectionalAtom* dAtom;
230 <  double pos[3], vel[3];
231 <  int nTotObjects;
232 <  StuntDouble* sd;
233 <  char* molName;
234 <  vector<StuntDouble*> integrableObjects;
235 <  vector<StuntDouble*>::iterator iter;
236 <  nTotObjects = entry_plug->getTotIntegrableObjects();
237 < #ifndef IS_MPI
238 <  
239 <  for(k = 0; k < outFile.size(); k++){
240 <    *outFile[k] << nTotObjects << "\n";
241 <
242 <    *outFile[k] << currentTime << ";\t"
243 <               << entry_plug->Hmat[0][0] << "\t"
244 <                     << entry_plug->Hmat[1][0] << "\t"
245 <                     << entry_plug->Hmat[2][0] << ";\t"
246 <              
247 <               << entry_plug->Hmat[0][1] << "\t"
248 <                     << entry_plug->Hmat[1][1] << "\t"
249 <                     << entry_plug->Hmat[2][1] << ";\t"
250 <
251 <                     << entry_plug->Hmat[0][2] << "\t"
252 <                     << entry_plug->Hmat[1][2] << "\t"
253 <                     << entry_plug->Hmat[2][2] << ";";
254 <
255 <    //write out additional parameters, such as chi and eta
256 <    *outFile[k] << entry_plug->the_integrator->getAdditionalParameters() << endl;
257 <  }
258 <  
259 <  for( i=0; i< entry_plug->n_mol; i++ ){
260 <
261 <    integrableObjects = entry_plug->molecules[i].getIntegrableObjects();
262 <    molName = (entry_plug->compStamps[entry_plug->molecules[i].getStampID()])->getID();
263 <    
264 <    for( iter = integrableObjects.begin();iter !=  integrableObjects.end(); ++iter){
265 <      sd = *iter;
266 <      sd->getPos(pos);
267 <      sd->getVel(vel);
268 <
269 <      sprintf( tempBuffer,
270 <             "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
271 <             sd->getType(),
272 <             pos[0],
273 <             pos[1],
274 <             pos[2],
275 <             vel[0],
276 <             vel[1],
277 <             vel[2]);
278 <      strcpy( writeLine, tempBuffer );
279 <
280 <      if( sd->isDirectional() ){
281 <
282 <        sd->getQ( q );
283 <        sd->getJ( ji );
284 <
285 <        sprintf( tempBuffer,
286 <               "%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
287 <               q[0],
288 <               q[1],
289 <               q[2],
290 <               q[3],
291 <                 ji[0],
292 <                 ji[1],
293 <                 ji[2]);
294 <        strcat( writeLine, tempBuffer );
284 >    for (unsigned int i = 0; i < 3; i++) {
285 >      for (unsigned int j = 0; j < 3; j++) {
286 >        if (isinf(eta(i,j)) || isnan(eta(i,j))) {      
287 >          sprintf( painCave.errMsg,
288 >                   "DumpWriter detected a numerical error writing the barostat");
289 >          painCave.isFatal = 1;
290 >          simError();
291 >        }        
292        }
296      else
297        strcat( writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n" );
298    
299      for(k = 0; k < outFile.size(); k++)
300        *outFile[k] << writeLine;      
293      }
294  
295 < }
295 >    sprintf(buffer, "    Barostat: {{ %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }}\n",
296 >            eta(0, 0), eta(1, 0), eta(2, 0),
297 >            eta(0, 1), eta(1, 1), eta(2, 1),
298 >            eta(0, 2), eta(1, 2), eta(2, 2));
299 >    os << buffer;
300  
301 < #else // is_mpi
301 >    os << "    </FrameData>\n";
302 >  }
303  
304 <  /* code to find maximum tag value */
308 <  
309 <  int *tagub, flag, MAXTAG;
310 <  MPI_Attr_get(MPI_COMM_WORLD, MPI_TAG_UB, &tagub, &flag);
311 <  if (flag) {
312 <    MAXTAG = *tagub;
313 <  } else {
314 <    MAXTAG = 32767;
315 <  }  
304 >  void DumpWriter::writeFrame(std::ostream& os) {
305  
306 <  int haveError;
306 > #ifdef IS_MPI
307 >    MPI_Status* istatus;
308 > #endif
309  
310 <  MPI_Status istatus;
311 <  int nCurObj;
312 <  int *MolToProcMap = mpiSim->getMolToProcMap();
310 >    Molecule* mol;
311 >    StuntDouble* sd;
312 >    SimInfo::MoleculeIterator mi;
313 >    Molecule::IntegrableObjectIterator ii;
314 >    RigidBody::AtomIterator ai;
315  
316 <  // write out header and node 0's coordinates
316 > #ifndef IS_MPI
317 >    os << "  <Snapshot>\n";
318 >
319 >    writeFrameProperties(os, info_->getSnapshotManager()->getCurrentSnapshot());
320  
321 <  if( worldRank == 0 ){
322 <
323 <    // Node 0 needs a list of the magic potatoes for each processor;
328 <
329 <    nProc = mpiSim->getNProcessors();
330 <    potatoes = new int[nProc];
331 <
332 <    //write out the comment lines
333 <    for (i = 0; i < nProc; i++)
334 <      potatoes[i] = 0;
335 <    
336 <      for(k = 0; k < outFile.size(); k++){
337 <        *outFile[k] << nTotObjects << "\n";
338 <
339 <        *outFile[k] << currentTime << ";\t"
340 <                         << entry_plug->Hmat[0][0] << "\t"
341 <                         << entry_plug->Hmat[1][0] << "\t"
342 <                         << entry_plug->Hmat[2][0] << ";\t"
343 <
344 <                         << entry_plug->Hmat[0][1] << "\t"
345 <                         << entry_plug->Hmat[1][1] << "\t"
346 <                         << entry_plug->Hmat[2][1] << ";\t"
347 <
348 <                         << entry_plug->Hmat[0][2] << "\t"
349 <                         << entry_plug->Hmat[1][2] << "\t"
350 <                         << entry_plug->Hmat[2][2] << ";";
351 <  
352 <        *outFile[k] << entry_plug->the_integrator->getAdditionalParameters() << endl;
353 <    }
354 <
355 <    currentIndex = 0;
356 <
357 <    for (i = 0 ; i < mpiSim->getNMolGlobal(); i++ ) {
321 >    os << "    <StuntDoubles>\n";
322 >    for (mol = info_->beginMolecule(mi); mol != NULL;
323 >         mol = info_->nextMolecule(mi)) {
324        
325 <      // Get the Node number which has this atom;
326 <      
327 <      which_node = MolToProcMap[i];
362 <      
363 <      if (which_node != 0) {
364 <        
365 <        if (potatoes[which_node] + 1 >= MAXTAG) {
366 <          // The potato was going to exceed the maximum value,
367 <          // so wrap this processor potato back to 0:        
368 <
369 <          potatoes[which_node] = 0;          
370 <          MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node, 0, MPI_COMM_WORLD);
325 >      for (sd = mol->beginIntegrableObject(ii); sd != NULL;  
326 >           sd = mol->nextIntegrableObject(ii)) {        
327 >          os << prepareDumpLine(sd);
328            
329 <        }
329 >      }
330 >    }    
331 >    os << "    </StuntDoubles>\n";
332  
333 <        myPotato = potatoes[which_node];        
333 >    if (doSiteData_) {
334 >      os << "    <SiteData>\n";
335 >      for (mol = info_->beginMolecule(mi); mol != NULL;
336 >           mol = info_->nextMolecule(mi)) {
337 >              
338 >        for (sd = mol->beginIntegrableObject(ii); sd != NULL;  
339 >           sd = mol->nextIntegrableObject(ii)) {        
340  
341 <        //recieve the number of integrableObject in current molecule
342 <        MPI_Recv(&nCurObj, 1, MPI_INT, which_node,
343 <                 myPotato, MPI_COMM_WORLD, &istatus);
379 <        myPotato++;
380 <        
381 <        for(int l = 0; l < nCurObj; l++){
341 >          int ioIndex = sd->getGlobalIntegrableObjectIndex();
342 >          // do one for the IO itself
343 >          os << prepareSiteLine(sd, ioIndex, 0);
344  
345 <          if (potatoes[which_node] + 2 >= MAXTAG) {
384 <            // The potato was going to exceed the maximum value,
385 <            // so wrap this processor potato back to 0:        
386 <
387 <            potatoes[which_node] = 0;          
388 <            MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node, 0, MPI_COMM_WORLD);
345 >          if (sd->isRigidBody()) {
346              
347 +            RigidBody* rb = static_cast<RigidBody*>(sd);
348 +            int siteIndex = 0;
349 +            for (Atom* atom = rb->beginAtom(ai); atom != NULL;  
350 +                 atom = rb->nextAtom(ai)) {                                            
351 +              os << prepareSiteLine(atom, ioIndex, siteIndex);
352 +              siteIndex++;
353 +            }
354            }
355 +        }
356 +      }    
357 +      os << "    </SiteData>\n";
358 +    }
359 +    os << "  </Snapshot>\n";
360  
361 <          MPI_Recv(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR, which_node,
362 <          myPotato, MPI_COMM_WORLD, &istatus);
361 >    os.flush();
362 > #else
363  
364 <          atomTypeString = MPIatomTypeString;
364 >    const int masterNode = 0;
365 >    int worldRank;
366 >    int nProc;
367  
368 <          myPotato++;
368 >    MPI_Comm_size( MPI_COMM_WORLD, &nProc);
369 >    MPI_Comm_rank( MPI_COMM_WORLD, &worldRank);
370  
399          MPI_Recv(atomData, 13, MPI_DOUBLE, which_node, myPotato, MPI_COMM_WORLD, &istatus);
400          myPotato++;
371  
372 <          MPI_Get_count(&istatus, MPI_DOUBLE, &msgLen);
372 >    if (worldRank == masterNode) {      
373 >      os << "  <Snapshot>\n";  
374 >      writeFrameProperties(os,
375 >                           info_->getSnapshotManager()->getCurrentSnapshot());
376 >      os << "    <StuntDoubles>\n";
377 >    }
378  
379 <          if(msgLen  == 13)
380 <            isDirectional = 1;
381 <          else
382 <            isDirectional = 0;
383 <          
384 <          // If we've survived to here, format the line:
385 <            
386 <          if (!isDirectional) {
387 <        
388 <            sprintf( writeLine,
389 <                 "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
390 <                 atomTypeString,
391 <                 atomData[0],
392 <                 atomData[1],
393 <                 atomData[2],
394 <                 atomData[3],
395 <                 atomData[4],
396 <                 atomData[5]);
397 <        
398 <           strcat( writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n" );
399 <        
400 <          }
401 <          else {
402 <        
403 <                sprintf( writeLine,
404 <                         "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
405 <                         atomTypeString,
406 <                         atomData[0],
407 <                         atomData[1],
408 <                         atomData[2],
409 <                         atomData[3],
410 <                         atomData[4],
411 <                         atomData[5],
412 <                         atomData[6],
413 <                         atomData[7],
414 <                         atomData[8],
415 <                         atomData[9],
416 <                         atomData[10],
417 <                         atomData[11],
418 <                         atomData[12]);
419 <            
420 <          }
421 <          
422 <          for(k = 0; k < outFile.size(); k++)
423 <            *outFile[k] << writeLine;            
379 >    //every node prepares the dump lines for integrable objects belong to itself
380 >    std::string buffer;
381 >    for (mol = info_->beginMolecule(mi); mol != NULL;
382 >         mol = info_->nextMolecule(mi)) {
383 >      for (sd = mol->beginIntegrableObject(ii); sd != NULL;
384 >           sd = mol->nextIntegrableObject(ii)) {        
385 >        buffer += prepareDumpLine(sd);
386 >      }
387 >    }
388 >    
389 >    if (worldRank == masterNode) {      
390 >      os << buffer;
391 >      
392 >      for (int i = 1; i < nProc; ++i) {
393 >        // tell processor i to start sending us data:
394 >        MPI_Bcast(&i, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
395 >
396 >        // receive the length of the string buffer that was
397 >        // prepared by processor i:        
398 >        int recvLength;
399 >        MPI_Recv(&recvLength, 1, MPI_INT, i, MPI_ANY_TAG, MPI_COMM_WORLD,
400 >                 istatus);
401 >
402 >        // create a buffer to receive the data
403 >        char* recvBuffer = new char[recvLength];
404 >        if (recvBuffer == NULL) {
405 >        } else {
406 >          // receive the data:
407 >          MPI_Recv(recvBuffer, recvLength, MPI_CHAR, i,
408 >                               MPI_ANY_TAG, MPI_COMM_WORLD, istatus);
409 >          // send it to the file:
410 >          os << recvBuffer;
411 >          // get rid of the receive buffer:
412 >          delete [] recvBuffer;
413 >        }
414 >      }
415 >    } else {
416 >      int sendBufferLength = buffer.size() + 1;
417 >      int myturn = 0;
418 >      for (int i = 1; i < nProc; ++i){
419 >        // wait for the master node to call our number:
420 >        MPI_Bcast(&myturn, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
421 >        if (myturn == worldRank){
422 >          // send the length of our buffer:
423 >          MPI_Send(&sendBufferLength, 1, MPI_INT, masterNode, 0, MPI_COMM_WORLD);
424  
425 <        }// end for(int l =0)
426 <        potatoes[which_node] = myPotato;
425 >          // send our buffer:
426 >          MPI_Send((void *)buffer.c_str(), sendBufferLength,
427 >                   MPI_CHAR, masterNode, 0, MPI_COMM_WORLD);
428  
429 +        }
430        }
431 <      else {
432 <        
433 <        haveError = 0;
434 <        
435 <            local_index = indexArray[currentIndex].first;        
431 >    }
432 >    
433 >    if (worldRank == masterNode) {      
434 >      os << "    </StuntDoubles>\n";
435 >    }
436  
437 <        integrableObjects = (entry_plug->molecules[local_index]).getIntegrableObjects();
437 >    if (doSiteData_) {
438 >      if (worldRank == masterNode) {
439 >        os << "    <SiteData>\n";
440 >      }
441 >      buffer.clear();
442 >      for (mol = info_->beginMolecule(mi); mol != NULL;
443 >           mol = info_->nextMolecule(mi)) {
444 >              
445 >        for (sd = mol->beginIntegrableObject(ii); sd != NULL;  
446 >             sd = mol->nextIntegrableObject(ii)) {      
447 >          
448 >          int ioIndex = sd->getGlobalIntegrableObjectIndex();
449 >          // do one for the IO itself
450 >          buffer += prepareSiteLine(sd, ioIndex, 0);
451  
452 <        for(iter= integrableObjects.begin(); iter != integrableObjects.end(); ++iter){    
463 <                sd = *iter;
464 <            atomTypeString = sd->getType();
465 <            
466 <            sd->getPos(pos);
467 <            sd->getVel(vel);          
468 <          
469 <            atomData[0] = pos[0];
470 <            atomData[1] = pos[1];
471 <            atomData[2] = pos[2];
472 <
473 <            atomData[3] = vel[0];
474 <            atomData[4] = vel[1];
475 <            atomData[5] = vel[2];
476 <              
477 <            isDirectional = 0;
478 <
479 <            if( sd->isDirectional() ){
480 <
481 <              isDirectional = 1;
482 <                
483 <              sd->getQ( q );
484 <              sd->getJ( ji );
485 <
486 <              for (int j = 0; j < 6 ; j++)
487 <                atomData[j] = atomData[j];            
488 <              
489 <              atomData[6] = q[0];
490 <              atomData[7] = q[1];
491 <              atomData[8] = q[2];
492 <              atomData[9] = q[3];
493 <              
494 <              atomData[10] = ji[0];
495 <              atomData[11] = ji[1];
496 <              atomData[12] = ji[2];
497 <            }
452 >          if (sd->isRigidBody()) {
453              
454 <            // If we've survived to here, format the line:
455 <            
456 <            if (!isDirectional) {
457 <        
458 <              sprintf( writeLine,
459 <                 "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
505 <                 atomTypeString,
506 <                 atomData[0],
507 <                 atomData[1],
508 <                 atomData[2],
509 <                 atomData[3],
510 <                 atomData[4],
511 <                 atomData[5]);
512 <        
513 <             strcat( writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n" );
514 <        
515 <            }
516 <            else {
517 <        
518 <                sprintf( writeLine,
519 <                         "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
520 <                         atomTypeString,
521 <                         atomData[0],
522 <                         atomData[1],
523 <                         atomData[2],
524 <                         atomData[3],
525 <                         atomData[4],
526 <                         atomData[5],
527 <                         atomData[6],
528 <                         atomData[7],
529 <                         atomData[8],
530 <                         atomData[9],
531 <                         atomData[10],
532 <                         atomData[11],
533 <                         atomData[12]);
534 <              
454 >            RigidBody* rb = static_cast<RigidBody*>(sd);
455 >            int siteIndex = 0;
456 >            for (Atom* atom = rb->beginAtom(ai); atom != NULL;  
457 >                 atom = rb->nextAtom(ai)) {                                            
458 >              buffer += prepareSiteLine(atom, ioIndex, siteIndex);
459 >              siteIndex++;
460              }
461 <            
462 <            for(k = 0; k < outFile.size(); k++)
538 <              *outFile[k] << writeLine;
539 <            
540 <            
541 <        }//end for(iter = integrableObject.begin())
542 <        
543 <      currentIndex++;
461 >          }
462 >        }
463        }
464  
465 <    }//end for(i = 0; i < mpiSim->getNmol())
465 >      if (worldRank == masterNode) {    
466 >        os << buffer;
467 >        
468 >        for (int i = 1; i < nProc; ++i) {
469 >          
470 >          // tell processor i to start sending us data:
471 >          MPI_Bcast(&i, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
472 >          
473 >          // receive the length of the string buffer that was
474 >          // prepared by processor i:        
475 >          int recvLength;
476 >          MPI_Recv(&recvLength, 1, MPI_INT, i, MPI_ANY_TAG, MPI_COMM_WORLD,
477 >                   istatus);
478 >          
479 >          // create a buffer to receive the data
480 >          char* recvBuffer = new char[recvLength];
481 >          if (recvBuffer == NULL) {
482 >          } else {
483 >            // receive the data:
484 >            MPI_Recv(recvBuffer, recvLength, MPI_CHAR, i,
485 >                     MPI_ANY_TAG, MPI_COMM_WORLD, istatus);
486 >            // send it to the file:
487 >            os << recvBuffer;
488 >            // get rid of the receive buffer:
489 >            delete [] recvBuffer;
490 >          }
491 >        }      
492 >      } else {
493 >        int sendBufferLength = buffer.size() + 1;
494 >        int myturn = 0;
495 >        for (int i = 1; i < nProc; ++i){
496 >          // wait for the master node to call our number:
497 >          MPI_Bcast(&myturn, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
498 >          if (myturn == worldRank){
499 >            // send the length of our buffer:
500 >            MPI_Send(&sendBufferLength, 1, MPI_INT, masterNode, 0, MPI_COMM_WORLD);
501 >            // send our buffer:
502 >            MPI_Send((void *)buffer.c_str(), sendBufferLength,
503 >                     MPI_CHAR, masterNode, 0, MPI_COMM_WORLD);
504 >          }
505 >        }
506 >      }
507 >      
508 >      if (worldRank == masterNode) {    
509 >        os << "    </SiteData>\n";
510 >      }
511 >    }
512      
513 <    for(k = 0; k < outFile.size(); k++)
514 <      outFile[k]->flush();
513 >    if (worldRank == masterNode) {
514 >      os << "  </Snapshot>\n";
515 >      os.flush();
516 >    }
517      
518 <    sprintf( checkPointMsg,
552 <             "Sucessfully took a dump.\n");
518 > #endif // is_mpi
519      
520 <    MPIcheckPoint();        
555 <    
556 <    delete[] potatoes;
557 <    
558 <  } else {
520 >  }
521  
522 <    // worldRank != 0, so I'm a remote node.  
522 >  std::string DumpWriter::prepareDumpLine(StuntDouble* sd) {
523 >        
524 >    int index = sd->getGlobalIntegrableObjectIndex();
525 >    std::string type("pv");
526 >    std::string line;
527 >    char tempBuffer[4096];
528  
529 <    // Set my magic potato to 0:
529 >    Vector3d pos;
530 >    Vector3d vel;
531 >    pos = sd->getPos();
532  
533 <    myPotato = 0;
534 <    currentIndex = 0;
535 <    
536 <    for (i = 0 ; i < mpiSim->getNMolGlobal(); i++ ) {
537 <      
538 <      // Am I the node which has this integrableObject?
539 <      
540 <      if (MolToProcMap[i] == worldRank) {
533 >    if (isinf(pos[0]) || isnan(pos[0]) ||
534 >        isinf(pos[1]) || isnan(pos[1]) ||
535 >        isinf(pos[2]) || isnan(pos[2]) ) {      
536 >      sprintf( painCave.errMsg,
537 >               "DumpWriter detected a numerical error writing the position"
538 >               " for object %d", index);      
539 >      painCave.isFatal = 1;
540 >      simError();
541 >    }
542  
543 +    vel = sd->getVel();        
544  
545 <        if (myPotato + 1 >= MAXTAG) {
546 <          
547 <          // The potato was going to exceed the maximum value,
548 <          // so wrap this processor potato back to 0 (and block until
549 <          // node 0 says we can go:
550 <          
551 <          MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &istatus);
552 <          
553 <        }
545 >    if (isinf(vel[0]) || isnan(vel[0]) ||
546 >        isinf(vel[1]) || isnan(vel[1]) ||
547 >        isinf(vel[2]) || isnan(vel[2]) ) {      
548 >      sprintf( painCave.errMsg,
549 >               "DumpWriter detected a numerical error writing the velocity"
550 >               " for object %d", index);      
551 >      painCave.isFatal = 1;
552 >      simError();
553 >    }
554  
555 <          local_index = indexArray[currentIndex].first;        
556 <          integrableObjects = entry_plug->molecules[local_index].getIntegrableObjects();
557 <          
558 <          nCurObj = integrableObjects.size();
588 <                      
589 <          MPI_Send(&nCurObj, 1, MPI_INT, 0,
590 <                             myPotato, MPI_COMM_WORLD);
591 <          myPotato++;
555 >    sprintf(tempBuffer, "%18.10g %18.10g %18.10g %13e %13e %13e",
556 >            pos[0], pos[1], pos[2],
557 >            vel[0], vel[1], vel[2]);                    
558 >    line += tempBuffer;
559  
560 <          for( iter = integrableObjects.begin(); iter  != integrableObjects.end(); iter++){
560 >    if (sd->isDirectional()) {
561 >      type += "qj";
562 >      Quat4d q;
563 >      Vector3d ji;
564 >      q = sd->getQ();
565  
566 <            if (myPotato + 2 >= MAXTAG) {
567 <          
568 <              // The potato was going to exceed the maximum value,
569 <              // so wrap this processor potato back to 0 (and block until
570 <              // node 0 says we can go:
571 <          
572 <              MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &istatus);
573 <              
574 <            }
575 <            
605 <            sd = *iter;
606 <            
607 <            atomTypeString = sd->getType();
566 >      if (isinf(q[0]) || isnan(q[0]) ||
567 >          isinf(q[1]) || isnan(q[1]) ||
568 >          isinf(q[2]) || isnan(q[2]) ||
569 >          isinf(q[3]) || isnan(q[3]) ) {      
570 >        sprintf( painCave.errMsg,
571 >                 "DumpWriter detected a numerical error writing the quaternion"
572 >                 " for object %d", index);      
573 >        painCave.isFatal = 1;
574 >        simError();
575 >      }
576  
577 <            sd->getPos(pos);
610 <            sd->getVel(vel);
577 >      ji = sd->getJ();
578  
579 <            atomData[0] = pos[0];
580 <            atomData[1] = pos[1];
581 <            atomData[2] = pos[2];
579 >      if (isinf(ji[0]) || isnan(ji[0]) ||
580 >          isinf(ji[1]) || isnan(ji[1]) ||
581 >          isinf(ji[2]) || isnan(ji[2]) ) {      
582 >        sprintf( painCave.errMsg,
583 >                 "DumpWriter detected a numerical error writing the angular"
584 >                 " momentum for object %d", index);      
585 >        painCave.isFatal = 1;
586 >        simError();
587 >      }
588  
589 <            atomData[3] = vel[0];
590 <            atomData[4] = vel[1];
591 <            atomData[5] = vel[2];
592 <              
593 <            isDirectional = 0;
589 >      sprintf(tempBuffer, " %13e %13e %13e %13e %13e %13e %13e",
590 >              q[0], q[1], q[2], q[3],
591 >              ji[0], ji[1], ji[2]);
592 >      line += tempBuffer;
593 >    }
594  
595 <            if( sd->isDirectional() ){
596 <
597 <                isDirectional = 1;
598 <                
599 <                sd->getQ( q );
600 <                sd->getJ( ji );
601 <                
602 <                
603 <                atomData[6] = q[0];
604 <                atomData[7] = q[1];
605 <                atomData[8] = q[2];
606 <                atomData[9] = q[3];
595 >    if (needForceVector_) {
596 >      type += "f";
597 >      Vector3d frc = sd->getFrc();
598 >      if (isinf(frc[0]) || isnan(frc[0]) ||
599 >          isinf(frc[1]) || isnan(frc[1]) ||
600 >          isinf(frc[2]) || isnan(frc[2]) ) {      
601 >        sprintf( painCave.errMsg,
602 >                 "DumpWriter detected a numerical error writing the force"
603 >                 " for object %d", index);      
604 >        painCave.isFatal = 1;
605 >        simError();
606 >      }
607 >      sprintf(tempBuffer, " %13e %13e %13e",
608 >              frc[0], frc[1], frc[2]);
609 >      line += tempBuffer;
610        
611 <                atomData[10] = ji[0];
612 <                atomData[11] = ji[1];
613 <                atomData[12] = ji[2];
614 <              }
611 >      if (sd->isDirectional()) {
612 >        type += "t";
613 >        Vector3d trq = sd->getTrq();        
614 >        if (isinf(trq[0]) || isnan(trq[0]) ||
615 >            isinf(trq[1]) || isnan(trq[1]) ||
616 >            isinf(trq[2]) || isnan(trq[2]) ) {      
617 >          sprintf( painCave.errMsg,
618 >                   "DumpWriter detected a numerical error writing the torque"
619 >                   " for object %d", index);      
620 >          painCave.isFatal = 1;
621 >          simError();
622 >        }        
623 >        sprintf(tempBuffer, " %13e %13e %13e",
624 >                trq[0], trq[1], trq[2]);
625 >        line += tempBuffer;
626 >      }      
627 >    }
628  
629 <            
630 <            strncpy(MPIatomTypeString, atomTypeString, MINIBUFFERSIZE);
629 >    sprintf(tempBuffer, "%10d %7s %s\n", index, type.c_str(), line.c_str());
630 >    return std::string(tempBuffer);
631 >  }
632  
633 <            // null terminate the string before sending (just in case):
634 <            MPIatomTypeString[MINIBUFFERSIZE-1] = '\0';
633 >  std::string DumpWriter::prepareSiteLine(StuntDouble* sd, int ioIndex, int siteIndex) {
634 >    int storageLayout = info_->getSnapshotManager()->getStorageLayout();
635  
636 <            MPI_Send(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR, 0,
637 <                             myPotato, MPI_COMM_WORLD);
638 <            
639 <            myPotato++;
650 <            
651 <            if (isDirectional) {
636 >    std::string id;
637 >    std::string type;
638 >    std::string line;
639 >    char tempBuffer[4096];
640  
641 <              MPI_Send(atomData, 13, MPI_DOUBLE, 0,
642 <                       myPotato, MPI_COMM_WORLD);
641 >    if (sd->isRigidBody()) {
642 >      sprintf(tempBuffer, "%10d           ", ioIndex);
643 >      id = std::string(tempBuffer);
644 >    } else {
645 >      sprintf(tempBuffer, "%10d %10d", ioIndex, siteIndex);
646 >      id = std::string(tempBuffer);
647 >    }
648                
649 <            } else {
649 >    if (needFlucQ_) {
650 >      if (storageLayout & DataStorage::dslFlucQPosition) {
651 >        type += "c";
652 >        RealType fqPos = sd->getFlucQPos();
653 >        if (isinf(fqPos) || isnan(fqPos) ) {      
654 >          sprintf( painCave.errMsg,
655 >                   "DumpWriter detected a numerical error writing the"
656 >                   " fluctuating charge for object %s", id.c_str());      
657 >          painCave.isFatal = 1;
658 >          simError();
659 >        }
660 >        sprintf(tempBuffer, " %13e ", fqPos);
661 >        line += tempBuffer;
662 >      }
663  
664 <              MPI_Send(atomData, 6, MPI_DOUBLE, 0,
665 <                       myPotato, MPI_COMM_WORLD);
666 <            }
664 >      if (storageLayout & DataStorage::dslFlucQVelocity) {
665 >        type += "w";    
666 >        RealType fqVel = sd->getFlucQVel();
667 >        if (isinf(fqVel) || isnan(fqVel) ) {      
668 >          sprintf( painCave.errMsg,
669 >                   "DumpWriter detected a numerical error writing the"
670 >                   " fluctuating charge velocity for object %s", id.c_str());      
671 >          painCave.isFatal = 1;
672 >          simError();
673 >        }
674 >        sprintf(tempBuffer, " %13e ", fqVel);
675 >        line += tempBuffer;
676 >      }
677  
678 <            myPotato++;  
679 <
678 >      if (needForceVector_) {
679 >        if (storageLayout & DataStorage::dslFlucQForce) {          
680 >          type += "g";
681 >          RealType fqFrc = sd->getFlucQFrc();        
682 >          if (isinf(fqFrc) || isnan(fqFrc) ) {      
683 >            sprintf( painCave.errMsg,
684 >                     "DumpWriter detected a numerical error writing the"
685 >                     " fluctuating charge force for object %s", id.c_str());      
686 >            painCave.isFatal = 1;
687 >            simError();
688            }
689 +          sprintf(tempBuffer, " %13e ", fqFrc);        
690 +          line += tempBuffer;
691 +        }
692 +      }
693 +    }
694 +    
695 +    if (needElectricField_) {
696 +      if (storageLayout & DataStorage::dslElectricField) {
697 +        type += "e";
698 +        Vector3d eField= sd->getElectricField();
699 +        if (isinf(eField[0]) || isnan(eField[0]) ||
700 +            isinf(eField[1]) || isnan(eField[1]) ||
701 +            isinf(eField[2]) || isnan(eField[2]) ) {      
702 +          sprintf( painCave.errMsg,
703 +                   "DumpWriter detected a numerical error writing the electric"
704 +                   " field for object %s", id.c_str());      
705 +          painCave.isFatal = 1;
706 +          simError();
707 +        }
708 +        sprintf(tempBuffer, " %13e %13e %13e",
709 +                eField[0], eField[1], eField[2]);
710 +        line += tempBuffer;
711 +      }
712 +    }
713  
714 <          currentIndex++;    
715 <          
714 >
715 >    if (needParticlePot_) {
716 >      if (storageLayout & DataStorage::dslParticlePot) {
717 >        type += "u";
718 >        RealType particlePot = sd->getParticlePot();
719 >        if (isinf(particlePot) || isnan(particlePot)) {      
720 >          sprintf( painCave.errMsg,
721 >                   "DumpWriter detected a numerical error writing the particle "
722 >                   " potential for object %s", id.c_str());      
723 >          painCave.isFatal = 1;
724 >          simError();
725          }
726 <      
726 >        sprintf(tempBuffer, " %13e", particlePot);
727 >        line += tempBuffer;
728        }
729 +    }
730 +  
731 +    sprintf(tempBuffer, "%s %7s %s\n", id.c_str(), type.c_str(), line.c_str());
732 +    return std::string(tempBuffer);
733 +  }
734  
735 <    sprintf( checkPointMsg,
736 <             "Sucessfully took a dump.\n");
737 <    MPIcheckPoint();                
735 >  void DumpWriter::writeDump() {
736 >    writeFrame(*dumpFile_);
737 >  }
738 >
739 >  void DumpWriter::writeEor() {
740 >    std::ostream* eorStream;
741      
742 + #ifdef IS_MPI
743 +    if (worldRank == 0) {
744 + #endif // is_mpi
745 +      
746 +      eorStream = createOStream(eorFilename_);
747 +
748 + #ifdef IS_MPI
749      }
750 + #endif
751 +    
752 +    writeFrame(*eorStream);
753 +      
754 + #ifdef IS_MPI
755 +    if (worldRank == 0) {
756 + #endif
757 +      
758 +      writeClosing(*eorStream);
759 +      delete eorStream;
760 +      
761 + #ifdef IS_MPI
762 +    }
763 + #endif // is_mpi  
764  
765 +  }
766  
767 <  
767 >
768 >  void DumpWriter::writeDumpAndEor() {
769 >    std::vector<std::streambuf*> buffers;
770 >    std::ostream* eorStream;
771 > #ifdef IS_MPI
772 >    if (worldRank == 0) {
773   #endif // is_mpi
774 < }
774 >      buffers.push_back(dumpFile_->rdbuf());
775 >      eorStream = createOStream(eorFilename_);
776 >      buffers.push_back(eorStream->rdbuf());
777 > #ifdef IS_MPI
778 >    }
779 > #endif // is_mpi    
780  
781 +    TeeBuf tbuf(buffers.begin(), buffers.end());
782 +    std::ostream os(&tbuf);
783 +    writeFrame(os);
784 +
785   #ifdef IS_MPI
786 +    if (worldRank == 0) {
787 + #endif // is_mpi
788 +      writeClosing(*eorStream);
789 +      delete eorStream;
790 + #ifdef IS_MPI
791 +    }
792 + #endif // is_mpi      
793 +  }
794  
795 < // a couple of functions to let us escape the write loop
795 >  std::ostream* DumpWriter::createOStream(const std::string& filename) {
796  
797 < void dWrite::DieDieDie( void ){
797 >    std::ostream* newOStream;
798 > #ifdef HAVE_ZLIB
799 >    if (needCompression_) {
800 >      newOStream = new ogzstream(filename.c_str());
801 >    } else {
802 >      newOStream = new std::ofstream(filename.c_str());
803 >    }
804 > #else
805 >    newOStream = new std::ofstream(filename.c_str());
806 > #endif
807 >    //write out MetaData first
808 >    (*newOStream) << "<OpenMD version=2>" << std::endl;
809 >    (*newOStream) << "  <MetaData>" << std::endl;
810 >    (*newOStream) << info_->getRawMetaData();
811 >    (*newOStream) << "  </MetaData>" << std::endl;
812 >    return newOStream;
813 >  }
814  
815 <  MPI_Finalize();
690 <  exit (0);
691 < }
815 >  void DumpWriter::writeClosing(std::ostream& os) {
816  
817 < #endif //is_mpi
817 >    os << "</OpenMD>\n";
818 >    os.flush();
819 >  }
820 >
821 > }//end namespace OpenMD

Comparing trunk/src/io/DumpWriter.cpp (property svn:keywords):
Revision 3 by tim, Fri Sep 24 16:27:58 2004 UTC vs.
Revision 1969 by gezelter, Wed Feb 26 14:14:50 2014 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines