ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/io/DumpWriter.cpp
(Generate patch)

Comparing trunk/src/io/DumpWriter.cpp (file contents):
Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
Revision 1796 by gezelter, Mon Sep 10 18:38:44 2012 UTC

# Line 1 | Line 1
1 < #define _LARGEFILE_SOURCE64
2 < #define _FILE_OFFSET_BITS 64
1 > /*
2 > * Copyright (c) 2009 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 > */
42 >
43 > #include "io/DumpWriter.hpp"
44 > #include "primitives/Molecule.hpp"
45 > #include "utils/simError.h"
46 > #include "io/basic_teebuf.hpp"
47 > #ifdef HAVE_ZLIB
48 > #include "io/gzstream.hpp"
49 > #endif
50 > #include "io/Globals.hpp"
51  
52 < #include <string.h>
53 < #include <iostream>
54 < #include <fstream>
55 < #include <algorithm>
8 < #include <utility>
52 > #ifdef _MSC_VER
53 > #define isnan(x) _isnan((x))
54 > #define isinf(x) (!_finite(x) && !_isnan(x))
55 > #endif
56  
57   #ifdef IS_MPI
58   #include <mpi.h>
59 < #include "mpiSimulation.hpp"
59 > #endif
60  
61 < namespace dWrite{
62 <  void DieDieDie( void );
16 < }
61 > using namespace std;
62 > namespace OpenMD {
63  
64 < using namespace dWrite;
65 < #endif //is_mpi
64 >  DumpWriter::DumpWriter(SimInfo* info)
65 >    : info_(info), filename_(info->getDumpFileName()), eorFilename_(info->getFinalConfigFileName()){
66  
67 < #include "ReadWrite.hpp"
68 < #include "simError.h"
67 >    Globals* simParams = info->getSimParams();
68 >    needCompression_   = simParams->getCompressDumpFile();
69 >    needForceVector_   = simParams->getOutputForceVector();
70 >    needParticlePot_   = simParams->getOutputParticlePotential();
71 >    needFlucQ_         = simParams->getOutputFluctuatingCharges();
72 >    needElectricField_ = simParams->getOutputElectricField();
73  
74 < DumpWriter::DumpWriter( SimInfo* the_entry_plug ){
74 >    if (needParticlePot_ || needFlucQ_ || needElectricField_) {
75 >      doSiteData_ = true;
76 >    } else {
77 >      doSiteData_ = false;
78 >    }
79  
80 <  entry_plug = the_entry_plug;
81 <
80 >    createDumpFile_ = true;
81 > #ifdef HAVE_LIBZ
82 >    if (needCompression_) {
83 >      filename_ += ".gz";
84 >      eorFilename_ += ".gz";
85 >    }
86 > #endif
87 >    
88   #ifdef IS_MPI
89 <  if(worldRank == 0 ){
89 >
90 >    if (worldRank == 0) {
91   #endif // is_mpi
92 +        
93 +      dumpFile_ = createOStream(filename_);
94  
95 <    dumpFile.open(entry_plug->sampleName.c_str(), ios::out | ios::trunc );
95 >      if (!dumpFile_) {
96 >        sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
97 >                filename_.c_str());
98 >        painCave.isFatal = 1;
99 >        simError();
100 >      }
101  
102 <    if( !dumpFile ){
102 > #ifdef IS_MPI
103  
36      sprintf( painCave.errMsg,
37               "Could not open \"%s\" for dump output.\n",
38               entry_plug->sampleName.c_str());
39      painCave.isFatal = 1;
40      simError();
104      }
105  
106 < #ifdef IS_MPI
106 > #endif // is_mpi
107 >
108    }
109  
46  //sort the local atoms by global index
47  sortByGlobalIndex();
48  
49  sprintf( checkPointMsg,
50           "Sucessfully opened output file for dumping.\n");
51  MPIcheckPoint();
52 #endif // is_mpi
53 }
110  
111 < DumpWriter::~DumpWriter( ){
111 >  DumpWriter::DumpWriter(SimInfo* info, const std::string& filename)
112 >    : info_(info), filename_(filename){
113  
114 < #ifdef IS_MPI
115 <  if(worldRank == 0 ){
59 < #endif // is_mpi
114 >    Globals* simParams = info->getSimParams();
115 >    eorFilename_ = filename_.substr(0, filename_.rfind(".")) + ".eor";    
116  
117 <    dumpFile.close();
117 >    needCompression_   = simParams->getCompressDumpFile();
118 >    needForceVector_   = simParams->getOutputForceVector();
119 >    needParticlePot_   = simParams->getOutputParticlePotential();
120 >    needFlucQ_         = simParams->getOutputFluctuatingCharges();
121 >    needElectricField_ = simParams->getOutputElectricField();
122  
123 +    if (needParticlePot_ || needFlucQ_ || needElectricField_) {
124 +      doSiteData_ = true;
125 +    } else {
126 +      doSiteData_ = false;
127 +    }
128 +
129 +    createDumpFile_ = true;
130 + #ifdef HAVE_LIBZ
131 +    if (needCompression_) {
132 +      filename_ += ".gz";
133 +      eorFilename_ += ".gz";
134 +    }
135 + #endif
136 +    
137   #ifdef IS_MPI
138 <  }
138 >
139 >    if (worldRank == 0) {
140   #endif // is_mpi
66 }
141  
142 +      
143 +      dumpFile_ = createOStream(filename_);
144 +
145 +      if (!dumpFile_) {
146 +        sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
147 +                filename_.c_str());
148 +        painCave.isFatal = 1;
149 +        simError();
150 +      }
151 +
152   #ifdef IS_MPI
153  
154 < /**
71 < * A hook function to load balancing
72 < */
154 >    }
155  
156 < void DumpWriter::update(){
75 <  sortByGlobalIndex();          
76 < }
77 <  
78 < /**
79 < * Auxiliary sorting function
80 < */
81 <
82 < bool indexSortingCriterion(const pair<int, int>& p1, const pair<int, int>& p2){
83 <  return p1.second < p2.second;
84 < }
156 > #endif // is_mpi
157  
158 < /**
87 < * Sorting the local index by global index
88 < */
89 <
90 < void DumpWriter::sortByGlobalIndex(){
91 <  Molecule* mols = entry_plug->molecules;  
92 <  indexArray.clear();
158 >  }
159    
160 <  for(int i = 0; i < entry_plug->n_mol;i++)
161 <    indexArray.push_back(make_pair(i, mols[i].getGlobalIndex()));
162 <  
163 <  sort(indexArray.begin(), indexArray.end(), indexSortingCriterion);    
164 < }
160 >  DumpWriter::DumpWriter(SimInfo* info, const std::string& filename, bool writeDumpFile)
161 >    : info_(info), filename_(filename){
162 >    
163 >    Globals* simParams = info->getSimParams();
164 >    eorFilename_ = filename_.substr(0, filename_.rfind(".")) + ".eor";    
165 >    
166 >    needCompression_   = simParams->getCompressDumpFile();
167 >    needForceVector_   = simParams->getOutputForceVector();
168 >    needParticlePot_   = simParams->getOutputParticlePotential();
169 >    needFlucQ_         = simParams->getOutputFluctuatingCharges();
170 >    needElectricField_ = simParams->getOutputElectricField();
171  
172 < #endif
172 >    if (needParticlePot_ || needFlucQ_ || needElectricField_) {
173 >      doSiteData_ = true;
174 >    } else {
175 >      doSiteData_ = false;
176 >    }
177  
178 < void DumpWriter::writeDump(double currentTime){
179 <
180 <  ofstream finalOut;
181 <  vector<ofstream*> fileStreams;
106 <
107 < #ifdef IS_MPI
108 <  if(worldRank == 0 ){
109 < #endif    
110 <    finalOut.open( entry_plug->finalName.c_str(), ios::out | ios::trunc );
111 <    if( !finalOut ){
112 <      sprintf( painCave.errMsg,
113 <               "Could not open \"%s\" for final dump output.\n",
114 <               entry_plug->finalName.c_str() );
115 <      painCave.isFatal = 1;
116 <      simError();
178 > #ifdef HAVE_LIBZ
179 >    if (needCompression_) {
180 >      filename_ += ".gz";
181 >      eorFilename_ += ".gz";
182      }
183 + #endif
184 +    
185   #ifdef IS_MPI
186 <  }
186 >    
187 >    if (worldRank == 0) {
188   #endif // is_mpi
189 +      
190 +      createDumpFile_ = writeDumpFile;
191 +      if (createDumpFile_) {
192 +        dumpFile_ = createOStream(filename_);
193 +      
194 +        if (!dumpFile_) {
195 +          sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
196 +                  filename_.c_str());
197 +          painCave.isFatal = 1;
198 +          simError();
199 +        }
200 +      }
201 + #ifdef IS_MPI
202 +      
203 +    }
204  
205 <  fileStreams.push_back(&finalOut);
206 <  fileStreams.push_back(&dumpFile);
205 >    
206 > #endif // is_mpi
207 >    
208 >  }
209  
210 <  writeFrame(fileStreams, currentTime);
210 >  DumpWriter::~DumpWriter() {
211  
212   #ifdef IS_MPI
128  finalOut.close();
129 #endif
130        
131 }
213  
214 < void DumpWriter::writeFinal(double currentTime){
214 >    if (worldRank == 0) {
215 > #endif // is_mpi
216 >      if (createDumpFile_){
217 >        writeClosing(*dumpFile_);
218 >        delete dumpFile_;
219 >      }
220 > #ifdef IS_MPI
221  
222 <  ofstream finalOut;
136 <  vector<ofstream*> fileStreams;
222 >    }
223  
138 #ifdef IS_MPI
139  if(worldRank == 0 ){
224   #endif // is_mpi
225  
226 <    finalOut.open( entry_plug->finalName.c_str(), ios::out | ios::trunc );
226 >  }
227  
228 <    if( !finalOut ){
228 >  void DumpWriter::writeFrameProperties(std::ostream& os, Snapshot* s) {
229 >
230 >    char buffer[1024];
231 >
232 >    os << "    <FrameData>\n";
233 >
234 >    RealType currentTime = s->getTime();
235 >
236 >    if (isinf(currentTime) || isnan(currentTime)) {      
237        sprintf( painCave.errMsg,
238 <               "Could not open \"%s\" for final dump output.\n",
147 <               entry_plug->finalName.c_str() );
238 >               "DumpWriter detected a numerical error writing the time");      
239        painCave.isFatal = 1;
240        simError();
241      }
242 +    
243 +    sprintf(buffer, "        Time: %.10g\n", currentTime);
244 +    os << buffer;
245  
246 < #ifdef IS_MPI
247 <  }
154 < #endif // is_mpi
155 <  
156 <  fileStreams.push_back(&finalOut);  
157 <  writeFrame(fileStreams, currentTime);
246 >    Mat3x3d hmat;
247 >    hmat = s->getHmat();
248  
249 < #ifdef IS_MPI
250 <  finalOut.close();
251 < #endif
252 <  
253 < }
249 >    for (unsigned int i = 0; i < 3; i++) {
250 >      for (unsigned int j = 0; j < 3; j++) {
251 >        if (isinf(hmat(i,j)) || isnan(hmat(i,j))) {      
252 >          sprintf( painCave.errMsg,
253 >                   "DumpWriter detected a numerical error writing the box");
254 >          painCave.isFatal = 1;
255 >          simError();
256 >        }        
257 >      }
258 >    }
259 >    
260 >    sprintf(buffer, "        Hmat: {{ %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }}\n",
261 >            hmat(0, 0), hmat(1, 0), hmat(2, 0),
262 >            hmat(0, 1), hmat(1, 1), hmat(2, 1),
263 >            hmat(0, 2), hmat(1, 2), hmat(2, 2));
264 >    os << buffer;
265  
266 < void DumpWriter::writeFrame( vector<ofstream*>& outFile, double currentTime ){
266 >    pair<RealType, RealType> thermostat = s->getThermostat();
267  
268 <  const int BUFFERSIZE = 2000;
269 <  const int MINIBUFFERSIZE = 100;
268 >    if (isinf(thermostat.first)  || isnan(thermostat.first) ||
269 >        isinf(thermostat.second) || isnan(thermostat.second)) {      
270 >      sprintf( painCave.errMsg,
271 >               "DumpWriter detected a numerical error writing the thermostat");
272 >      painCave.isFatal = 1;
273 >      simError();
274 >    }
275 >    sprintf(buffer, "  Thermostat: %.10g , %.10g\n", thermostat.first,
276 >            thermostat.second);
277 >    os << buffer;
278  
279 <  char tempBuffer[BUFFERSIZE];  
280 <  char writeLine[BUFFERSIZE];
279 >    Mat3x3d eta;
280 >    eta = s->getBarostat();
281  
282 <  int i;
283 <  unsigned int k;
284 <
285 < #ifdef IS_MPI
286 <  
287 <  /*********************************************************************
288 <   * Documentation?  You want DOCUMENTATION?
289 <   *
181 <   * Why all the potatoes below?  
182 <   *
183 <   * To make a long story short, the original version of DumpWriter
184 <   * worked in the most inefficient way possible.  Node 0 would
185 <   * poke each of the node for an individual atom's formatted data
186 <   * as node 0 worked its way down the global index. This was particularly
187 <   * inefficient since the method blocked all processors at every atom
188 <   * (and did it twice!).
189 <   *
190 <   * An intermediate version of DumpWriter could be described from Node
191 <   * zero's perspective as follows:
192 <   *
193 <   *  1) Have 100 of your friends stand in a circle.
194 <   *  2) When you say go, have all of them start tossing potatoes at
195 <   *     you (one at a time).
196 <   *  3) Catch the potatoes.
197 <   *
198 <   * It was an improvement, but MPI has buffers and caches that could
199 <   * best be described in this analogy as "potato nets", so there's no
200 <   * need to block the processors atom-by-atom.
201 <   *
202 <   * This new and improved DumpWriter works in an even more efficient
203 <   * way:
204 <   *
205 <   *  1) Have 100 of your friend stand in a circle.
206 <   *  2) When you say go, have them start tossing 5-pound bags of
207 <   *     potatoes at you.
208 <   *  3) Once you've caught a friend's bag of potatoes,
209 <   *     toss them a spud to let them know they can toss another bag.
210 <   *
211 <   * How's THAT for documentation?
212 <   *
213 <   *********************************************************************/
214 <
215 <  int *potatoes;
216 <  int myPotato;
217 <
218 <  int nProc;
219 <  int j, which_node, done, which_atom, local_index, currentIndex;
220 <  double atomData[13];
221 <  int isDirectional;
222 <  char* atomTypeString;
223 <  char MPIatomTypeString[MINIBUFFERSIZE];
224 <  int nObjects;
225 <  int msgLen; // the length of message actually recieved at master nodes
226 < #endif //is_mpi
227 <
228 <  double q[4], ji[3];
229 <  DirectionalAtom* dAtom;
230 <  double pos[3], vel[3];
231 <  int nTotObjects;
232 <  StuntDouble* sd;
233 <  char* molName;
234 <  vector<StuntDouble*> integrableObjects;
235 <  vector<StuntDouble*>::iterator iter;
236 <  nTotObjects = entry_plug->getTotIntegrableObjects();
237 < #ifndef IS_MPI
238 <  
239 <  for(k = 0; k < outFile.size(); k++){
240 <    *outFile[k] << nTotObjects << "\n";
241 <
242 <    *outFile[k] << currentTime << ";\t"
243 <               << entry_plug->Hmat[0][0] << "\t"
244 <                     << entry_plug->Hmat[1][0] << "\t"
245 <                     << entry_plug->Hmat[2][0] << ";\t"
246 <              
247 <               << entry_plug->Hmat[0][1] << "\t"
248 <                     << entry_plug->Hmat[1][1] << "\t"
249 <                     << entry_plug->Hmat[2][1] << ";\t"
250 <
251 <                     << entry_plug->Hmat[0][2] << "\t"
252 <                     << entry_plug->Hmat[1][2] << "\t"
253 <                     << entry_plug->Hmat[2][2] << ";";
254 <
255 <    //write out additional parameters, such as chi and eta
256 <    *outFile[k] << entry_plug->the_integrator->getAdditionalParameters() << endl;
257 <  }
258 <  
259 <  for( i=0; i< entry_plug->n_mol; i++ ){
260 <
261 <    integrableObjects = entry_plug->molecules[i].getIntegrableObjects();
262 <    molName = (entry_plug->compStamps[entry_plug->molecules[i].getStampID()])->getID();
263 <    
264 <    for( iter = integrableObjects.begin();iter !=  integrableObjects.end(); ++iter){
265 <      sd = *iter;
266 <      sd->getPos(pos);
267 <      sd->getVel(vel);
268 <
269 <      sprintf( tempBuffer,
270 <             "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
271 <             sd->getType(),
272 <             pos[0],
273 <             pos[1],
274 <             pos[2],
275 <             vel[0],
276 <             vel[1],
277 <             vel[2]);
278 <      strcpy( writeLine, tempBuffer );
279 <
280 <      if( sd->isDirectional() ){
281 <
282 <        sd->getQ( q );
283 <        sd->getJ( ji );
284 <
285 <        sprintf( tempBuffer,
286 <               "%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
287 <               q[0],
288 <               q[1],
289 <               q[2],
290 <               q[3],
291 <                 ji[0],
292 <                 ji[1],
293 <                 ji[2]);
294 <        strcat( writeLine, tempBuffer );
282 >    for (unsigned int i = 0; i < 3; i++) {
283 >      for (unsigned int j = 0; j < 3; j++) {
284 >        if (isinf(eta(i,j)) || isnan(eta(i,j))) {      
285 >          sprintf( painCave.errMsg,
286 >                   "DumpWriter detected a numerical error writing the barostat");
287 >          painCave.isFatal = 1;
288 >          simError();
289 >        }        
290        }
296      else
297        strcat( writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n" );
298    
299      for(k = 0; k < outFile.size(); k++)
300        *outFile[k] << writeLine;      
291      }
292  
293 < }
293 >    sprintf(buffer, "    Barostat: {{ %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }}\n",
294 >            eta(0, 0), eta(1, 0), eta(2, 0),
295 >            eta(0, 1), eta(1, 1), eta(2, 1),
296 >            eta(0, 2), eta(1, 2), eta(2, 2));
297 >    os << buffer;
298  
299 < #else // is_mpi
299 >    os << "    </FrameData>\n";
300 >  }
301  
302 <  /* code to find maximum tag value */
308 <  
309 <  int *tagub, flag, MAXTAG;
310 <  MPI_Attr_get(MPI_COMM_WORLD, MPI_TAG_UB, &tagub, &flag);
311 <  if (flag) {
312 <    MAXTAG = *tagub;
313 <  } else {
314 <    MAXTAG = 32767;
315 <  }  
302 >  void DumpWriter::writeFrame(std::ostream& os) {
303  
304 <  int haveError;
304 > #ifdef IS_MPI
305 >    MPI::Status istatus;
306 > #endif
307  
308 <  MPI_Status istatus;
309 <  int nCurObj;
310 <  int *MolToProcMap = mpiSim->getMolToProcMap();
308 >    Molecule* mol;
309 >    StuntDouble* sd;
310 >    SimInfo::MoleculeIterator mi;
311 >    Molecule::IntegrableObjectIterator ii;
312 >    RigidBody::AtomIterator ai;
313 >    Atom* atom;
314  
315 <  // write out header and node 0's coordinates
315 > #ifndef IS_MPI
316 >    os << "  <Snapshot>\n";
317 >
318 >    writeFrameProperties(os, info_->getSnapshotManager()->getCurrentSnapshot());
319  
320 <  if( worldRank == 0 ){
320 >    os << "    <StuntDoubles>\n";
321 >    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
322  
327    // Node 0 needs a list of the magic potatoes for each processor;
328
329    nProc = mpiSim->getNProcessors();
330    potatoes = new int[nProc];
331
332    //write out the comment lines
333    for (i = 0; i < nProc; i++)
334      potatoes[i] = 0;
335    
336      for(k = 0; k < outFile.size(); k++){
337        *outFile[k] << nTotObjects << "\n";
338
339        *outFile[k] << currentTime << ";\t"
340                         << entry_plug->Hmat[0][0] << "\t"
341                         << entry_plug->Hmat[1][0] << "\t"
342                         << entry_plug->Hmat[2][0] << ";\t"
343
344                         << entry_plug->Hmat[0][1] << "\t"
345                         << entry_plug->Hmat[1][1] << "\t"
346                         << entry_plug->Hmat[2][1] << ";\t"
347
348                         << entry_plug->Hmat[0][2] << "\t"
349                         << entry_plug->Hmat[1][2] << "\t"
350                         << entry_plug->Hmat[2][2] << ";";
351  
352        *outFile[k] << entry_plug->the_integrator->getAdditionalParameters() << endl;
353    }
354
355    currentIndex = 0;
356
357    for (i = 0 ; i < mpiSim->getNMolGlobal(); i++ ) {
323        
324 <      // Get the Node number which has this atom;
325 <      
326 <      which_node = MolToProcMap[i];
327 <      
328 <      if (which_node != 0) {
329 <        
330 <        if (potatoes[which_node] + 1 >= MAXTAG) {
366 <          // The potato was going to exceed the maximum value,
367 <          // so wrap this processor potato back to 0:        
324 >      for (sd = mol->beginIntegrableObject(ii); sd != NULL;  
325 >           sd = mol->nextIntegrableObject(ii)) {        
326 >          os << prepareDumpLine(sd);
327 >          
328 >      }
329 >    }    
330 >    os << "    </StuntDoubles>\n";
331  
332 <          potatoes[which_node] = 0;          
333 <          MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node, 0, MPI_COMM_WORLD);
332 >    if (doSiteData_) {
333 >      os << "    <SiteData>\n";
334 >      for (mol = info_->beginMolecule(mi); mol != NULL;
335 >           mol = info_->nextMolecule(mi)) {
336 >              
337 >        for (sd = mol->beginIntegrableObject(ii); sd != NULL;  
338 >             sd = mol->nextIntegrableObject(ii)) {      
339            
340 <        }
340 >          int ioIndex = sd->getGlobalIntegrableObjectIndex();
341 >          // do one for the IO itself
342 >          os << prepareSiteLine(sd, ioIndex, 0);
343  
344 <        myPotato = potatoes[which_node];        
375 <
376 <        //recieve the number of integrableObject in current molecule
377 <        MPI_Recv(&nCurObj, 1, MPI_INT, which_node,
378 <                 myPotato, MPI_COMM_WORLD, &istatus);
379 <        myPotato++;
380 <        
381 <        for(int l = 0; l < nCurObj; l++){
382 <
383 <          if (potatoes[which_node] + 2 >= MAXTAG) {
384 <            // The potato was going to exceed the maximum value,
385 <            // so wrap this processor potato back to 0:        
386 <
387 <            potatoes[which_node] = 0;          
388 <            MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node, 0, MPI_COMM_WORLD);
344 >          if (sd->isRigidBody()) {
345              
346 +            RigidBody* rb = static_cast<RigidBody*>(sd);
347 +            int siteIndex = 0;
348 +            for (atom = rb->beginAtom(ai); atom != NULL;  
349 +                 atom = rb->nextAtom(ai)) {                                            
350 +              os << prepareSiteLine(atom, ioIndex, siteIndex);
351 +              siteIndex++;
352 +            }
353            }
354 +        }
355 +      }    
356 +      os << "    </SiteData>\n";
357 +    }
358 +    os << "  </Snapshot>\n";
359  
360 <          MPI_Recv(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR, which_node,
361 <          myPotato, MPI_COMM_WORLD, &istatus);
360 >    os.flush();
361 > #else
362  
363 <          atomTypeString = MPIatomTypeString;
363 >    const int masterNode = 0;
364 >    int worldRank = MPI::COMM_WORLD.Get_rank();
365 >    int nProc = MPI::COMM_WORLD.Get_size();
366  
367 <          myPotato++;
367 >    if (worldRank == masterNode) {      
368 >      os << "  <Snapshot>\n";  
369 >      writeFrameProperties(os,
370 >                           info_->getSnapshotManager()->getCurrentSnapshot());
371 >      os << "    <StuntDoubles>\n";
372 >    }
373  
374 <          MPI_Recv(atomData, 13, MPI_DOUBLE, which_node, myPotato, MPI_COMM_WORLD, &istatus);
375 <          myPotato++;
374 >    //every node prepares the dump lines for integrable objects belong to itself
375 >    std::string buffer;
376 >    for (mol = info_->beginMolecule(mi); mol != NULL;
377 >         mol = info_->nextMolecule(mi)) {
378 >      for (sd = mol->beginIntegrableObject(ii); sd != NULL;
379 >           sd = mol->nextIntegrableObject(ii)) {        
380 >        buffer += prepareDumpLine(sd);
381 >      }
382 >    }
383 >    
384 >    if (worldRank == masterNode) {      
385 >      os << buffer;
386 >      
387 >      for (int i = 1; i < nProc; ++i) {
388 >        // tell processor i to start sending us data:
389 >        MPI::COMM_WORLD.Bcast(&i, 1, MPI::INT, masterNode);
390  
391 <          MPI_Get_count(&istatus, MPI_DOUBLE, &msgLen);
391 >        // receive the length of the string buffer that was
392 >        // prepared by processor i:        
393 >        int recvLength;
394 >        MPI::COMM_WORLD.Recv(&recvLength, 1, MPI::INT, i, MPI::ANY_TAG,
395 >                             istatus);
396  
397 <          if(msgLen  == 13)
398 <            isDirectional = 1;
399 <          else
400 <            isDirectional = 0;
397 >        // create a buffer to receive the data
398 >        char* recvBuffer = new char[recvLength];
399 >        if (recvBuffer == NULL) {
400 >        } else {
401 >          // receive the data:
402 >          MPI::COMM_WORLD.Recv(recvBuffer, recvLength, MPI::CHAR, i,
403 >                               MPI::ANY_TAG, istatus);
404 >          // send it to the file:
405 >          os << recvBuffer;
406 >          // get rid of the receive buffer:
407 >          delete [] recvBuffer;
408 >        }
409 >      }
410 >    } else {
411 >      int sendBufferLength = buffer.size() + 1;
412 >      int myturn = 0;
413 >      for (int i = 1; i < nProc; ++i){
414 >        // wait for the master node to call our number:
415 >        MPI::COMM_WORLD.Bcast(&myturn, 1, MPI::INT, masterNode);
416 >        if (myturn == worldRank){
417 >          // send the length of our buffer:
418 >          MPI::COMM_WORLD.Send(&sendBufferLength, 1, MPI::INT, masterNode, 0);
419 >
420 >          // send our buffer:
421 >          MPI::COMM_WORLD.Send((void *)buffer.c_str(), sendBufferLength,
422 >                               MPI::CHAR, masterNode, 0);
423 >        }
424 >      }
425 >    }
426 >    
427 >    if (worldRank == masterNode) {      
428 >      os << "    </StuntDoubles>\n";
429 >    }
430 >
431 >    if (doSiteData_) {
432 >      if (worldRank == masterNode) {
433 >        os << "    <SiteData>\n";
434 >      }
435 >      buffer.clear();
436 >      for (mol = info_->beginMolecule(mi); mol != NULL;
437 >           mol = info_->nextMolecule(mi)) {
438 >              
439 >        for (sd = mol->beginIntegrableObject(ii); sd != NULL;  
440 >             sd = mol->nextIntegrableObject(ii)) {      
441            
442 <          // If we've survived to here, format the line:
442 >          int ioIndex = sd->getGlobalIntegrableObjectIndex();
443 >          // do one for the IO itself
444 >          buffer += prepareSiteLine(sd, ioIndex, 0);
445 >
446 >          if (sd->isRigidBody()) {
447              
448 <          if (!isDirectional) {
449 <        
450 <            sprintf( writeLine,
451 <                 "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
452 <                 atomTypeString,
453 <                 atomData[0],
454 <                 atomData[1],
418 <                 atomData[2],
419 <                 atomData[3],
420 <                 atomData[4],
421 <                 atomData[5]);
422 <        
423 <           strcat( writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n" );
424 <        
425 <          }
426 <          else {
427 <        
428 <                sprintf( writeLine,
429 <                         "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
430 <                         atomTypeString,
431 <                         atomData[0],
432 <                         atomData[1],
433 <                         atomData[2],
434 <                         atomData[3],
435 <                         atomData[4],
436 <                         atomData[5],
437 <                         atomData[6],
438 <                         atomData[7],
439 <                         atomData[8],
440 <                         atomData[9],
441 <                         atomData[10],
442 <                         atomData[11],
443 <                         atomData[12]);
444 <            
448 >            RigidBody* rb = static_cast<RigidBody*>(sd);
449 >            int siteIndex = 0;
450 >            for (atom = rb->beginAtom(ai); atom != NULL;  
451 >                 atom = rb->nextAtom(ai)) {                                            
452 >              buffer += prepareSiteLine(atom, ioIndex, siteIndex);
453 >              siteIndex++;
454 >            }
455            }
456 +        }
457 +      }
458 +
459 +      if (worldRank == masterNode) {    
460 +        os << buffer;
461 +        
462 +        for (int i = 1; i < nProc; ++i) {
463            
464 <          for(k = 0; k < outFile.size(); k++)
465 <            *outFile[k] << writeLine;            
464 >          // tell processor i to start sending us data:
465 >          MPI::COMM_WORLD.Bcast(&i, 1, MPI::INT, masterNode);
466 >          
467 >          // receive the length of the string buffer that was
468 >          // prepared by processor i:        
469 >          int recvLength;
470 >          MPI::COMM_WORLD.Recv(&recvLength, 1, MPI::INT, i, MPI::ANY_TAG,
471 >                               istatus);
472 >          
473 >          // create a buffer to receive the data
474 >          char* recvBuffer = new char[recvLength];
475 >          if (recvBuffer == NULL) {
476 >          } else {
477 >            // receive the data:
478 >            MPI::COMM_WORLD.Recv(recvBuffer, recvLength, MPI::CHAR, i,
479 >                                 MPI::ANY_TAG, istatus);
480 >            // send it to the file:
481 >            os << recvBuffer;
482 >            // get rid of the receive buffer:
483 >            delete [] recvBuffer;
484 >          }
485 >        }      
486 >      } else {
487 >        int sendBufferLength = buffer.size() + 1;
488 >        int myturn = 0;
489 >        for (int i = 1; i < nProc; ++i){
490 >          // wait for the master node to call our number:
491 >          MPI::COMM_WORLD.Bcast(&myturn, 1, MPI::INT, masterNode);
492 >          if (myturn == worldRank){
493 >            // send the length of our buffer:
494 >            MPI::COMM_WORLD.Send(&sendBufferLength, 1, MPI::INT, masterNode, 0);
495 >            // send our buffer:
496 >            MPI::COMM_WORLD.Send((void *)buffer.c_str(), sendBufferLength,
497 >                                 MPI::CHAR, masterNode, 0);
498 >          }
499 >        }
500 >      }
501 >      
502 >      if (worldRank == masterNode) {    
503 >        os << "    </SiteData>\n";
504 >      }
505 >    }
506 >    
507 >    if (worldRank == masterNode) {
508 >      os << "  </Snapshot>\n";
509 >      os.flush();
510 >    }
511 >    
512 > #endif // is_mpi
513 >    
514 >  }
515  
516 <        }// end for(int l =0)
517 <        potatoes[which_node] = myPotato;
516 >  std::string DumpWriter::prepareDumpLine(StuntDouble* sd) {
517 >        
518 >    int index = sd->getGlobalIntegrableObjectIndex();
519 >    std::string type("pv");
520 >    std::string line;
521 >    char tempBuffer[4096];
522  
523 <      }
524 <      else {
525 <        
456 <        haveError = 0;
457 <        
458 <            local_index = indexArray[currentIndex].first;        
523 >    Vector3d pos;
524 >    Vector3d vel;
525 >    pos = sd->getPos();
526  
527 <        integrableObjects = (entry_plug->molecules[local_index]).getIntegrableObjects();
527 >    if (isinf(pos[0]) || isnan(pos[0]) ||
528 >        isinf(pos[1]) || isnan(pos[1]) ||
529 >        isinf(pos[2]) || isnan(pos[2]) ) {      
530 >      sprintf( painCave.errMsg,
531 >               "DumpWriter detected a numerical error writing the position"
532 >               " for object %d", index);      
533 >      painCave.isFatal = 1;
534 >      simError();
535 >    }
536  
537 <        for(iter= integrableObjects.begin(); iter != integrableObjects.end(); ++iter){    
463 <                sd = *iter;
464 <            atomTypeString = sd->getType();
465 <            
466 <            sd->getPos(pos);
467 <            sd->getVel(vel);          
468 <          
469 <            atomData[0] = pos[0];
470 <            atomData[1] = pos[1];
471 <            atomData[2] = pos[2];
537 >    vel = sd->getVel();        
538  
539 <            atomData[3] = vel[0];
540 <            atomData[4] = vel[1];
541 <            atomData[5] = vel[2];
542 <              
543 <            isDirectional = 0;
539 >    if (isinf(vel[0]) || isnan(vel[0]) ||
540 >        isinf(vel[1]) || isnan(vel[1]) ||
541 >        isinf(vel[2]) || isnan(vel[2]) ) {      
542 >      sprintf( painCave.errMsg,
543 >               "DumpWriter detected a numerical error writing the velocity"
544 >               " for object %d", index);      
545 >      painCave.isFatal = 1;
546 >      simError();
547 >    }
548  
549 <            if( sd->isDirectional() ){
549 >    sprintf(tempBuffer, "%18.10g %18.10g %18.10g %13e %13e %13e",
550 >            pos[0], pos[1], pos[2],
551 >            vel[0], vel[1], vel[2]);                    
552 >    line += tempBuffer;
553  
554 <              isDirectional = 1;
555 <                
556 <              sd->getQ( q );
557 <              sd->getJ( ji );
554 >    if (sd->isDirectional()) {
555 >      type += "qj";
556 >      Quat4d q;
557 >      Vector3d ji;
558 >      q = sd->getQ();
559  
560 <              for (int j = 0; j < 6 ; j++)
561 <                atomData[j] = atomData[j];            
562 <              
563 <              atomData[6] = q[0];
564 <              atomData[7] = q[1];
565 <              atomData[8] = q[2];
566 <              atomData[9] = q[3];
567 <              
568 <              atomData[10] = ji[0];
495 <              atomData[11] = ji[1];
496 <              atomData[12] = ji[2];
497 <            }
498 <            
499 <            // If we've survived to here, format the line:
500 <            
501 <            if (!isDirectional) {
502 <        
503 <              sprintf( writeLine,
504 <                 "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
505 <                 atomTypeString,
506 <                 atomData[0],
507 <                 atomData[1],
508 <                 atomData[2],
509 <                 atomData[3],
510 <                 atomData[4],
511 <                 atomData[5]);
512 <        
513 <             strcat( writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n" );
514 <        
515 <            }
516 <            else {
517 <        
518 <                sprintf( writeLine,
519 <                         "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
520 <                         atomTypeString,
521 <                         atomData[0],
522 <                         atomData[1],
523 <                         atomData[2],
524 <                         atomData[3],
525 <                         atomData[4],
526 <                         atomData[5],
527 <                         atomData[6],
528 <                         atomData[7],
529 <                         atomData[8],
530 <                         atomData[9],
531 <                         atomData[10],
532 <                         atomData[11],
533 <                         atomData[12]);
534 <              
535 <            }
536 <            
537 <            for(k = 0; k < outFile.size(); k++)
538 <              *outFile[k] << writeLine;
539 <            
540 <            
541 <        }//end for(iter = integrableObject.begin())
542 <        
543 <      currentIndex++;
560 >      if (isinf(q[0]) || isnan(q[0]) ||
561 >          isinf(q[1]) || isnan(q[1]) ||
562 >          isinf(q[2]) || isnan(q[2]) ||
563 >          isinf(q[3]) || isnan(q[3]) ) {      
564 >        sprintf( painCave.errMsg,
565 >                 "DumpWriter detected a numerical error writing the quaternion"
566 >                 " for object %d", index);      
567 >        painCave.isFatal = 1;
568 >        simError();
569        }
570  
571 <    }//end for(i = 0; i < mpiSim->getNmol())
547 <    
548 <    for(k = 0; k < outFile.size(); k++)
549 <      outFile[k]->flush();
550 <    
551 <    sprintf( checkPointMsg,
552 <             "Sucessfully took a dump.\n");
553 <    
554 <    MPIcheckPoint();        
555 <    
556 <    delete[] potatoes;
557 <    
558 <  } else {
571 >      ji = sd->getJ();
572  
573 <    // worldRank != 0, so I'm a remote node.  
573 >      if (isinf(ji[0]) || isnan(ji[0]) ||
574 >          isinf(ji[1]) || isnan(ji[1]) ||
575 >          isinf(ji[2]) || isnan(ji[2]) ) {      
576 >        sprintf( painCave.errMsg,
577 >                 "DumpWriter detected a numerical error writing the angular"
578 >                 " momentum for object %d", index);      
579 >        painCave.isFatal = 1;
580 >        simError();
581 >      }
582  
583 <    // Set my magic potato to 0:
583 >      sprintf(tempBuffer, " %13e %13e %13e %13e %13e %13e %13e",
584 >              q[0], q[1], q[2], q[3],
585 >              ji[0], ji[1], ji[2]);
586 >      line += tempBuffer;
587 >    }
588  
589 <    myPotato = 0;
590 <    currentIndex = 0;
591 <    
592 <    for (i = 0 ; i < mpiSim->getNMolGlobal(); i++ ) {
589 >    if (needForceVector_) {
590 >      type += "f";
591 >      Vector3d frc = sd->getFrc();
592 >      if (isinf(frc[0]) || isnan(frc[0]) ||
593 >          isinf(frc[1]) || isnan(frc[1]) ||
594 >          isinf(frc[2]) || isnan(frc[2]) ) {      
595 >        sprintf( painCave.errMsg,
596 >                 "DumpWriter detected a numerical error writing the force"
597 >                 " for object %d", index);      
598 >        painCave.isFatal = 1;
599 >        simError();
600 >      }
601 >      sprintf(tempBuffer, " %13e %13e %13e",
602 >              frc[0], frc[1], frc[2]);
603 >      line += tempBuffer;
604        
605 <      // Am I the node which has this integrableObject?
606 <      
607 <      if (MolToProcMap[i] == worldRank) {
605 >      if (sd->isDirectional()) {
606 >        type += "t";
607 >        Vector3d trq = sd->getTrq();        
608 >        if (isinf(trq[0]) || isnan(trq[0]) ||
609 >            isinf(trq[1]) || isnan(trq[1]) ||
610 >            isinf(trq[2]) || isnan(trq[2]) ) {      
611 >          sprintf( painCave.errMsg,
612 >                   "DumpWriter detected a numerical error writing the torque"
613 >                   " for object %d", index);      
614 >          painCave.isFatal = 1;
615 >          simError();
616 >        }        
617 >        sprintf(tempBuffer, " %13e %13e %13e",
618 >                trq[0], trq[1], trq[2]);
619 >        line += tempBuffer;
620 >      }      
621 >    }
622  
623 +    sprintf(tempBuffer, "%10d %7s %s\n", index, type.c_str(), line.c_str());
624 +    return std::string(tempBuffer);
625 +  }
626  
627 <        if (myPotato + 1 >= MAXTAG) {
628 <          
576 <          // The potato was going to exceed the maximum value,
577 <          // so wrap this processor potato back to 0 (and block until
578 <          // node 0 says we can go:
579 <          
580 <          MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &istatus);
581 <          
582 <        }
627 >  std::string DumpWriter::prepareSiteLine(StuntDouble* sd, int ioIndex, int siteIndex) {
628 >        
629  
630 <          local_index = indexArray[currentIndex].first;        
631 <          integrableObjects = entry_plug->molecules[local_index].getIntegrableObjects();
632 <          
633 <          nCurObj = integrableObjects.size();
588 <                      
589 <          MPI_Send(&nCurObj, 1, MPI_INT, 0,
590 <                             myPotato, MPI_COMM_WORLD);
591 <          myPotato++;
630 >    std::string id;
631 >    std::string type;
632 >    std::string line;
633 >    char tempBuffer[4096];
634  
635 <          for( iter = integrableObjects.begin(); iter  != integrableObjects.end(); iter++){
636 <
637 <            if (myPotato + 2 >= MAXTAG) {
638 <          
639 <              // The potato was going to exceed the maximum value,
640 <              // so wrap this processor potato back to 0 (and block until
641 <              // node 0 says we can go:
600 <          
601 <              MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &istatus);
635 >    if (sd->isRigidBody()) {
636 >      sprintf(tempBuffer, "%10d           ", ioIndex);
637 >      id = std::string(tempBuffer);
638 >    } else {
639 >      sprintf(tempBuffer, "%10d %10d", ioIndex, siteIndex);
640 >      id = std::string(tempBuffer);
641 >    }
642                
643 <            }
644 <            
645 <            sd = *iter;
646 <            
647 <            atomTypeString = sd->getType();
643 >    if (needFlucQ_) {
644 >      type += "cw";
645 >      RealType fqPos = sd->getFlucQPos();
646 >      if (isinf(fqPos) || isnan(fqPos) ) {      
647 >        sprintf( painCave.errMsg,
648 >                 "DumpWriter detected a numerical error writing the"
649 >                 " fluctuating charge for object %s", id.c_str());      
650 >        painCave.isFatal = 1;
651 >        simError();
652 >      }
653 >      sprintf(tempBuffer, " %13e ", fqPos);
654 >      line += tempBuffer;
655 >    
656 >      RealType fqVel = sd->getFlucQVel();
657 >      if (isinf(fqVel) || isnan(fqVel) ) {      
658 >        sprintf( painCave.errMsg,
659 >                 "DumpWriter detected a numerical error writing the"
660 >                 " fluctuating charge velocity for object %s", id.c_str());      
661 >        painCave.isFatal = 1;
662 >        simError();
663 >      }
664 >      sprintf(tempBuffer, " %13e ", fqVel);
665 >      line += tempBuffer;
666  
667 <            sd->getPos(pos);
668 <            sd->getVel(vel);
667 >      if (needForceVector_) {
668 >        type += "g";
669 >        RealType fqFrc = sd->getFlucQFrc();        
670 >        if (isinf(fqFrc) || isnan(fqFrc) ) {      
671 >          sprintf( painCave.errMsg,
672 >                   "DumpWriter detected a numerical error writing the"
673 >                   " fluctuating charge force for object %s", id.c_str());      
674 >          painCave.isFatal = 1;
675 >          simError();
676 >        }
677 >        sprintf(tempBuffer, " %13e ", fqFrc);        
678 >        line += tempBuffer;
679 >      }
680 >    }
681  
682 <            atomData[0] = pos[0];
683 <            atomData[1] = pos[1];
684 <            atomData[2] = pos[2];
682 >    if (needElectricField_) {
683 >      type += "e";
684 >      Vector3d eField= sd->getElectricField();
685 >      if (isinf(eField[0]) || isnan(eField[0]) ||
686 >          isinf(eField[1]) || isnan(eField[1]) ||
687 >          isinf(eField[2]) || isnan(eField[2]) ) {      
688 >        sprintf( painCave.errMsg,
689 >                 "DumpWriter detected a numerical error writing the electric"
690 >                 " field for object %s", id.c_str());      
691 >        painCave.isFatal = 1;
692 >        simError();
693 >      }
694 >      sprintf(tempBuffer, " %13e %13e %13e",
695 >              eField[0], eField[1], eField[2]);
696 >      line += tempBuffer;
697 >    }
698  
616            atomData[3] = vel[0];
617            atomData[4] = vel[1];
618            atomData[5] = vel[2];
619              
620            isDirectional = 0;
699  
700 <            if( sd->isDirectional() ){
700 >    if (needParticlePot_) {
701 >      type += "u";
702 >      RealType particlePot = sd->getParticlePot();
703 >      if (isinf(particlePot) || isnan(particlePot)) {      
704 >        sprintf( painCave.errMsg,
705 >                 "DumpWriter detected a numerical error writing the particle "
706 >                 " potential for object %s", id.c_str());      
707 >        painCave.isFatal = 1;
708 >        simError();
709 >      }
710 >      sprintf(tempBuffer, " %13e", particlePot);
711 >      line += tempBuffer;
712 >    }
713 >    
714  
715 <                isDirectional = 1;
716 <                
717 <                sd->getQ( q );
627 <                sd->getJ( ji );
628 <                
629 <                
630 <                atomData[6] = q[0];
631 <                atomData[7] = q[1];
632 <                atomData[8] = q[2];
633 <                atomData[9] = q[3];
634 <      
635 <                atomData[10] = ji[0];
636 <                atomData[11] = ji[1];
637 <                atomData[12] = ji[2];
638 <              }
715 >    sprintf(tempBuffer, "%s %7s %s\n", id.c_str(), type.c_str(), line.c_str());
716 >    return std::string(tempBuffer);
717 >  }
718  
719 <            
720 <            strncpy(MPIatomTypeString, atomTypeString, MINIBUFFERSIZE);
719 >  void DumpWriter::writeDump() {
720 >    writeFrame(*dumpFile_);
721 >  }
722  
723 <            // null terminate the string before sending (just in case):
724 <            MPIatomTypeString[MINIBUFFERSIZE-1] = '\0';
723 >  void DumpWriter::writeEor() {
724 >    std::ostream* eorStream;
725 >    
726 > #ifdef IS_MPI
727 >    if (worldRank == 0) {
728 > #endif // is_mpi
729  
730 <            MPI_Send(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR, 0,
647 <                             myPotato, MPI_COMM_WORLD);
648 <            
649 <            myPotato++;
650 <            
651 <            if (isDirectional) {
730 >      eorStream = createOStream(eorFilename_);
731  
732 <              MPI_Send(atomData, 13, MPI_DOUBLE, 0,
733 <                       myPotato, MPI_COMM_WORLD);
734 <              
656 <            } else {
732 > #ifdef IS_MPI
733 >    }
734 > #endif // is_mpi    
735  
736 <              MPI_Send(atomData, 6, MPI_DOUBLE, 0,
659 <                       myPotato, MPI_COMM_WORLD);
660 <            }
736 >    writeFrame(*eorStream);
737  
738 <            myPotato++;  
738 > #ifdef IS_MPI
739 >    if (worldRank == 0) {
740 > #endif // is_mpi
741 >      writeClosing(*eorStream);
742 >      delete eorStream;
743 > #ifdef IS_MPI
744 >    }
745 > #endif // is_mpi  
746  
747 <          }
747 >  }
748  
666          currentIndex++;    
667          
668        }
669      
670      }
749  
750 <    sprintf( checkPointMsg,
751 <             "Sucessfully took a dump.\n");
752 <    MPIcheckPoint();                
753 <    
750 >  void DumpWriter::writeDumpAndEor() {
751 >    std::vector<std::streambuf*> buffers;
752 >    std::ostream* eorStream;
753 > #ifdef IS_MPI
754 >    if (worldRank == 0) {
755 > #endif // is_mpi
756 >
757 >      buffers.push_back(dumpFile_->rdbuf());
758 >
759 >      eorStream = createOStream(eorFilename_);
760 >
761 >      buffers.push_back(eorStream->rdbuf());
762 >        
763 > #ifdef IS_MPI
764      }
765 + #endif // is_mpi    
766  
767 +    TeeBuf tbuf(buffers.begin(), buffers.end());
768 +    std::ostream os(&tbuf);
769  
770 <  
680 < #endif // is_mpi
681 < }
770 >    writeFrame(os);
771  
772   #ifdef IS_MPI
773 +    if (worldRank == 0) {
774 + #endif // is_mpi
775 +      writeClosing(*eorStream);
776 +      delete eorStream;
777 + #ifdef IS_MPI
778 +    }
779 + #endif // is_mpi  
780 +    
781 +  }
782  
783 < // a couple of functions to let us escape the write loop
783 >  std::ostream* DumpWriter::createOStream(const std::string& filename) {
784  
785 < void dWrite::DieDieDie( void ){
785 >    std::ostream* newOStream;
786 > #ifdef HAVE_ZLIB
787 >    if (needCompression_) {
788 >      newOStream = new ogzstream(filename.c_str());
789 >    } else {
790 >      newOStream = new std::ofstream(filename.c_str());
791 >    }
792 > #else
793 >    newOStream = new std::ofstream(filename.c_str());
794 > #endif
795 >    //write out MetaData first
796 >    (*newOStream) << "<OpenMD version=2>" << std::endl;
797 >    (*newOStream) << "  <MetaData>" << std::endl;
798 >    (*newOStream) << info_->getRawMetaData();
799 >    (*newOStream) << "  </MetaData>" << std::endl;
800 >    return newOStream;
801 >  }
802  
803 <  MPI_Finalize();
690 <  exit (0);
691 < }
803 >  void DumpWriter::writeClosing(std::ostream& os) {
804  
805 < #endif //is_mpi
805 >    os << "</OpenMD>\n";
806 >    os.flush();
807 >  }
808 >
809 > }//end namespace OpenMD

Comparing trunk/src/io/DumpWriter.cpp (property svn:keywords):
Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
Revision 1796 by gezelter, Mon Sep 10 18:38:44 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines