ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/io/DumpWriter.cpp
(Generate patch)

Comparing trunk/src/io/DumpWriter.cpp (file contents):
Revision 965 by tim, Fri May 19 20:45:55 2006 UTC vs.
Revision 1993 by gezelter, Tue Apr 29 17:32:31 2014 UTC

# Line 1 | Line 1
1   /*
2 < * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
2 > * Copyright (c) 2009 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
5   * non-exclusive, royalty free, license to use, modify and
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42 +
43 + #include "config.h"
44 +
45 + #ifdef IS_MPI
46 + #include <mpi.h>
47 + #endif
48  
49   #include "io/DumpWriter.hpp"
50   #include "primitives/Molecule.hpp"
51   #include "utils/simError.h"
52   #include "io/basic_teebuf.hpp"
53 + #ifdef HAVE_ZLIB
54   #include "io/gzstream.hpp"
55 + #endif
56   #include "io/Globals.hpp"
57  
58 < #ifdef IS_MPI
59 < #include <mpi.h>
60 < #endif //is_mpi
58 > #ifdef _MSC_VER
59 > #define isnan(x) _isnan((x))
60 > #define isinf(x) (!_finite(x) && !_isnan(x))
61 > #endif
62  
63 < namespace oopse {
63 > using namespace std;
64 > namespace OpenMD {
65  
66    DumpWriter::DumpWriter(SimInfo* info)
67 <    : info_(info), filename_(info->getDumpFileName()), eorFilename_(info->getFinalConfigFileName()){
67 >    : info_(info), filename_(info->getDumpFileName()),
68 >      eorFilename_(info->getFinalConfigFileName()){
69  
70      Globals* simParams = info->getSimParams();
71 <    needCompression_ = simParams->getCompressDumpFile();
72 <    needForceVector_ = simParams->getOutputForceVector();
71 >    needCompression_   = simParams->getCompressDumpFile();
72 >    needForceVector_   = simParams->getOutputForceVector();
73 >    needParticlePot_   = simParams->getOutputParticlePotential();
74 >    needFlucQ_         = simParams->getOutputFluctuatingCharges();
75 >    needElectricField_ = simParams->getOutputElectricField();
76 >    needSitePotential_ = simParams->getOutputSitePotential();
77 >
78 >    if (needParticlePot_ || needFlucQ_ || needElectricField_ ||
79 >        needSitePotential_) {
80 >      doSiteData_ = true;
81 >    } else {
82 >      doSiteData_ = false;
83 >    }
84 >
85      createDumpFile_ = true;
86   #ifdef HAVE_LIBZ
87      if (needCompression_) {
88 <        filename_ += ".gz";
89 <        eorFilename_ += ".gz";
88 >      filename_ += ".gz";
89 >      eorFilename_ += ".gz";
90      }
91   #endif
92      
93   #ifdef IS_MPI
94  
95 <      if (worldRank == 0) {
95 >    if (worldRank == 0) {
96   #endif // is_mpi
73
97          
98 <        dumpFile_ = createOStream(filename_);
98 >      dumpFile_ = createOStream(filename_);
99  
100 <        if (!dumpFile_) {
101 <          sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
102 <                  filename_.c_str());
103 <          painCave.isFatal = 1;
104 <          simError();
105 <        }
100 >      if (!dumpFile_) {
101 >        sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
102 >                filename_.c_str());
103 >        painCave.isFatal = 1;
104 >        simError();
105 >      }
106  
107   #ifdef IS_MPI
108  
109 <      }
109 >    }
110  
88      sprintf(checkPointMsg, "Sucessfully opened output file for dumping.\n");
89      MPIcheckPoint();
90
111   #endif // is_mpi
112  
113 <    }
113 >  }
114  
115  
116    DumpWriter::DumpWriter(SimInfo* info, const std::string& filename)
# Line 99 | Line 119 | namespace oopse {
119      Globals* simParams = info->getSimParams();
120      eorFilename_ = filename_.substr(0, filename_.rfind(".")) + ".eor";    
121  
122 <    needCompression_ = simParams->getCompressDumpFile();
123 <    needForceVector_ = simParams->getOutputForceVector();
122 >    needCompression_   = simParams->getCompressDumpFile();
123 >    needForceVector_   = simParams->getOutputForceVector();
124 >    needParticlePot_   = simParams->getOutputParticlePotential();
125 >    needFlucQ_         = simParams->getOutputFluctuatingCharges();
126 >    needElectricField_ = simParams->getOutputElectricField();
127 >    needSitePotential_ = simParams->getOutputSitePotential();
128 >
129 >    if (needParticlePot_ || needFlucQ_ || needElectricField_ ||
130 >        needSitePotential_) {
131 >      doSiteData_ = true;
132 >    } else {
133 >      doSiteData_ = false;
134 >    }
135 >
136      createDumpFile_ = true;
137   #ifdef HAVE_LIBZ
138      if (needCompression_) {
139 <        filename_ += ".gz";
140 <        eorFilename_ += ".gz";
139 >      filename_ += ".gz";
140 >      eorFilename_ += ".gz";
141      }
142   #endif
143      
144   #ifdef IS_MPI
145  
146 <      if (worldRank == 0) {
146 >    if (worldRank == 0) {
147   #endif // is_mpi
148  
149        
150 <        dumpFile_ = createOStream(filename_);
150 >      dumpFile_ = createOStream(filename_);
151  
152 <        if (!dumpFile_) {
153 <          sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
154 <                  filename_.c_str());
155 <          painCave.isFatal = 1;
156 <          simError();
157 <        }
152 >      if (!dumpFile_) {
153 >        sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
154 >                filename_.c_str());
155 >        painCave.isFatal = 1;
156 >        simError();
157 >      }
158  
159   #ifdef IS_MPI
160  
161 <      }
161 >    }
162  
131      sprintf(checkPointMsg, "Sucessfully opened output file for dumping.\n");
132      MPIcheckPoint();
133
163   #endif // is_mpi
164  
165 <    }
165 >  }
166    
167    DumpWriter::DumpWriter(SimInfo* info, const std::string& filename, bool writeDumpFile)
168 <  : info_(info), filename_(filename){
168 >    : info_(info), filename_(filename){
169      
170      Globals* simParams = info->getSimParams();
171      eorFilename_ = filename_.substr(0, filename_.rfind(".")) + ".eor";    
172      
173 <    needCompression_ = simParams->getCompressDumpFile();
174 <    needForceVector_ = simParams->getOutputForceVector();
175 <    
173 >    needCompression_   = simParams->getCompressDumpFile();
174 >    needForceVector_   = simParams->getOutputForceVector();
175 >    needParticlePot_   = simParams->getOutputParticlePotential();
176 >    needFlucQ_         = simParams->getOutputFluctuatingCharges();
177 >    needElectricField_ = simParams->getOutputElectricField();
178 >    needSitePotential_ = simParams->getOutputSitePotential();
179 >
180 >    if (needParticlePot_ || needFlucQ_ || needElectricField_ ||
181 >        needSitePotential_) {
182 >      doSiteData_ = true;
183 >    } else {
184 >      doSiteData_ = false;
185 >    }
186 >
187   #ifdef HAVE_LIBZ
188      if (needCompression_) {
189        filename_ += ".gz";
# Line 170 | Line 210 | namespace oopse {
210   #ifdef IS_MPI
211        
212      }
213 +
214      
174    sprintf(checkPointMsg, "Sucessfully opened output file for dumping.\n");
175    MPIcheckPoint();
176    
215   #endif // is_mpi
216      
217    }
180  
181  
182  
183  
184  
218  
219    DumpWriter::~DumpWriter() {
220  
# Line 190 | Line 223 | namespace oopse {
223      if (worldRank == 0) {
224   #endif // is_mpi
225        if (createDumpFile_){
226 +        writeClosing(*dumpFile_);
227          delete dumpFile_;
228        }
229   #ifdef IS_MPI
# Line 200 | Line 234 | namespace oopse {
234  
235    }
236  
237 <  void DumpWriter::writeCommentLine(std::ostream& os, Snapshot* s) {
204 <
205 <    RealType currentTime;
206 <    Mat3x3d hmat;
207 <    RealType chi;
208 <    RealType integralOfChiDt;
209 <    Mat3x3d eta;
210 <    
211 <    currentTime = s->getTime();
212 <    hmat = s->getHmat();
213 <    chi = s->getChi();
214 <    integralOfChiDt = s->getIntegralOfChiDt();
215 <    eta = s->getEta();
216 <    
217 <    os << currentTime << ";\t"
218 <       << hmat(0, 0) << "\t" << hmat(1, 0) << "\t" << hmat(2, 0) << ";\t"
219 <       << hmat(0, 1) << "\t" << hmat(1, 1) << "\t" << hmat(2, 1) << ";\t"
220 <       << hmat(0, 2) << "\t" << hmat(1, 2) << "\t" << hmat(2, 2) << ";\t";
237 >  void DumpWriter::writeFrameProperties(std::ostream& os, Snapshot* s) {
238  
239 <    //write out additional parameters, such as chi and eta
239 >    char buffer[1024];
240  
241 <    os << chi << "\t" << integralOfChiDt << ";\t";
241 >    os << "    <FrameData>\n";
242  
243 <    os << eta(0, 0) << "\t" << eta(1, 0) << "\t" << eta(2, 0) << ";\t"
227 <       << eta(0, 1) << "\t" << eta(1, 1) << "\t" << eta(2, 1) << ";\t"
228 <       << eta(0, 2) << "\t" << eta(1, 2) << "\t" << eta(2, 2) << ";";
229 <        
230 <    os << "\n";
231 <  }
243 >    RealType currentTime = s->getTime();
244  
245 <  void DumpWriter::writeFrame(std::ostream& os) {
246 <    const int BUFFERSIZE = 2000;
247 <    const int MINIBUFFERSIZE = 100;
245 >    if (isinf(currentTime) || isnan(currentTime)) {      
246 >      sprintf( painCave.errMsg,
247 >               "DumpWriter detected a numerical error writing the time");      
248 >      painCave.isFatal = 1;
249 >      simError();
250 >    }
251 >    
252 >    sprintf(buffer, "        Time: %.10g\n", currentTime);
253 >    os << buffer;
254  
255 <    char tempBuffer[BUFFERSIZE];
256 <    char writeLine[BUFFERSIZE];
255 >    Mat3x3d hmat;
256 >    hmat = s->getHmat();
257  
258 <    Quat4d q;
259 <    Vector3d ji;
260 <    Vector3d pos;
261 <    Vector3d vel;
262 <    Vector3d frc;
263 <    Vector3d trq;
258 >    for (unsigned int i = 0; i < 3; i++) {
259 >      for (unsigned int j = 0; j < 3; j++) {
260 >        if (isinf(hmat(i,j)) || isnan(hmat(i,j))) {      
261 >          sprintf( painCave.errMsg,
262 >                   "DumpWriter detected a numerical error writing the box");
263 >          painCave.isFatal = 1;
264 >          simError();
265 >        }        
266 >      }
267 >    }
268 >    
269 >    sprintf(buffer, "        Hmat: {{ %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }}\n",
270 >            hmat(0, 0), hmat(1, 0), hmat(2, 0),
271 >            hmat(0, 1), hmat(1, 1), hmat(2, 1),
272 >            hmat(0, 2), hmat(1, 2), hmat(2, 2));
273 >    os << buffer;
274  
275 <    Molecule* mol;
248 <    StuntDouble* integrableObject;
249 <    SimInfo::MoleculeIterator mi;
250 <    Molecule::IntegrableObjectIterator ii;
251 <  
252 <    int nTotObjects;    
253 <    nTotObjects = info_->getNGlobalIntegrableObjects();
275 >    pair<RealType, RealType> thermostat = s->getThermostat();
276  
277 < #ifndef IS_MPI
277 >    if (isinf(thermostat.first)  || isnan(thermostat.first) ||
278 >        isinf(thermostat.second) || isnan(thermostat.second)) {      
279 >      sprintf( painCave.errMsg,
280 >               "DumpWriter detected a numerical error writing the thermostat");
281 >      painCave.isFatal = 1;
282 >      simError();
283 >    }
284 >    sprintf(buffer, "  Thermostat: %.10g , %.10g\n", thermostat.first,
285 >            thermostat.second);
286 >    os << buffer;
287  
288 +    Mat3x3d eta;
289 +    eta = s->getBarostat();
290  
291 <    os << nTotObjects << "\n";
292 <        
293 <    writeCommentLine(os, info_->getSnapshotManager()->getCurrentSnapshot());
291 >    for (unsigned int i = 0; i < 3; i++) {
292 >      for (unsigned int j = 0; j < 3; j++) {
293 >        if (isinf(eta(i,j)) || isnan(eta(i,j))) {      
294 >          sprintf( painCave.errMsg,
295 >                   "DumpWriter detected a numerical error writing the barostat");
296 >          painCave.isFatal = 1;
297 >          simError();
298 >        }        
299 >      }
300 >    }
301  
302 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
302 >    sprintf(buffer, "    Barostat: {{ %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }}\n",
303 >            eta(0, 0), eta(1, 0), eta(2, 0),
304 >            eta(0, 1), eta(1, 1), eta(2, 1),
305 >            eta(0, 2), eta(1, 2), eta(2, 2));
306 >    os << buffer;
307  
308 <      for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
309 <           integrableObject = mol->nextIntegrableObject(ii)) {
266 <                
308 >    os << "    </FrameData>\n";
309 >  }
310  
311 <        pos = integrableObject->getPos();
269 <        vel = integrableObject->getVel();
311 >  void DumpWriter::writeFrame(std::ostream& os) {
312  
313 <        sprintf(tempBuffer, "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
314 <                integrableObject->getType().c_str(),
315 <                pos[0], pos[1], pos[2],
274 <                vel[0], vel[1], vel[2]);
313 > #ifdef IS_MPI
314 >    MPI_Status istatus;
315 > #endif
316  
317 <        strcpy(writeLine, tempBuffer);
317 >    Molecule* mol;
318 >    StuntDouble* sd;
319 >    SimInfo::MoleculeIterator mi;
320 >    Molecule::IntegrableObjectIterator ii;
321 >    RigidBody::AtomIterator ai;
322  
323 <        if (integrableObject->isDirectional()) {
324 <          q = integrableObject->getQ();
325 <          ji = integrableObject->getJ();
326 <
282 <          sprintf(tempBuffer, "%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
283 <                  q[0], q[1], q[2], q[3],
284 <                  ji[0], ji[1], ji[2]);
285 <          strcat(writeLine, tempBuffer);
286 <        } else {
287 <          strcat(writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0");
288 <        }
289 <
290 <        if (needForceVector_) {
291 <          frc = integrableObject->getFrc();
292 <          trq = integrableObject->getTrq();
293 <          
294 <          sprintf(tempBuffer, "\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
295 <                  frc[0], frc[1], frc[2],
296 <                  trq[0], trq[1], trq[2]);
297 <          strcat(writeLine, tempBuffer);
298 <        }
299 <        
300 <        strcat(writeLine, "\n");
301 <        os << writeLine;
323 > #ifndef IS_MPI
324 >    os << "  <Snapshot>\n";
325 >
326 >    writeFrameProperties(os, info_->getSnapshotManager()->getCurrentSnapshot());
327  
328 +    os << "    <StuntDoubles>\n";
329 +    for (mol = info_->beginMolecule(mi); mol != NULL;
330 +         mol = info_->nextMolecule(mi)) {
331 +      
332 +      for (sd = mol->beginIntegrableObject(ii); sd != NULL;  
333 +           sd = mol->nextIntegrableObject(ii)) {        
334 +          os << prepareDumpLine(sd);
335 +          
336        }
337 +    }    
338 +    os << "    </StuntDoubles>\n";
339 +
340 +    if (doSiteData_) {
341 +      os << "    <SiteData>\n";
342 +      for (mol = info_->beginMolecule(mi); mol != NULL;
343 +           mol = info_->nextMolecule(mi)) {
344 +              
345 +        for (sd = mol->beginIntegrableObject(ii); sd != NULL;  
346 +           sd = mol->nextIntegrableObject(ii)) {        
347 +
348 +          int ioIndex = sd->getGlobalIntegrableObjectIndex();
349 +          // do one for the IO itself
350 +          os << prepareSiteLine(sd, ioIndex, 0);
351 +
352 +          if (sd->isRigidBody()) {
353 +            
354 +            RigidBody* rb = static_cast<RigidBody*>(sd);
355 +            int siteIndex = 0;
356 +            for (Atom* atom = rb->beginAtom(ai); atom != NULL;  
357 +                 atom = rb->nextAtom(ai)) {                                            
358 +              os << prepareSiteLine(atom, ioIndex, siteIndex);
359 +              siteIndex++;
360 +            }
361 +          }
362 +        }
363 +      }    
364 +      os << "    </SiteData>\n";
365      }
366 +    os << "  </Snapshot>\n";
367  
368      os.flush();
369 < #else // is_mpi
308 <    /*********************************************************************
309 <     * Documentation?  You want DOCUMENTATION?
310 <     *
311 <     * Why all the potatoes below?  
312 <     *
313 <     * To make a long story short, the original version of DumpWriter
314 <     * worked in the most inefficient way possible.  Node 0 would
315 <     * poke each of the node for an individual atom's formatted data
316 <     * as node 0 worked its way down the global index. This was particularly
317 <     * inefficient since the method blocked all processors at every atom
318 <     * (and did it twice!).
319 <     *
320 <     * An intermediate version of DumpWriter could be described from Node
321 <     * zero's perspective as follows:
322 <     *
323 <     *  1) Have 100 of your friends stand in a circle.
324 <     *  2) When you say go, have all of them start tossing potatoes at
325 <     *     you (one at a time).
326 <     *  3) Catch the potatoes.
327 <     *
328 <     * It was an improvement, but MPI has buffers and caches that could
329 <     * best be described in this analogy as "potato nets", so there's no
330 <     * need to block the processors atom-by-atom.
331 <     *
332 <     * This new and improved DumpWriter works in an even more efficient
333 <     * way:
334 <     *
335 <     *  1) Have 100 of your friend stand in a circle.
336 <     *  2) When you say go, have them start tossing 5-pound bags of
337 <     *     potatoes at you.
338 <     *  3) Once you've caught a friend's bag of potatoes,
339 <     *     toss them a spud to let them know they can toss another bag.
340 <     *
341 <     * How's THAT for documentation?
342 <     *
343 <     *********************************************************************/
344 <    const int masterNode = 0;
369 > #else
370  
371 <    int * potatoes;
372 <    int myPotato;
371 >    const int masterNode = 0;
372 >    int worldRank;
373      int nProc;
349    int which_node;
350    RealType atomData[19];
351    int isDirectional;
352    char MPIatomTypeString[MINIBUFFERSIZE];
353    int msgLen; // the length of message actually recieved at master nodes
354    int haveError;
355    MPI_Status istatus;
356    int nCurObj;
357    
358    // code to find maximum tag value
359    int * tagub;
360    int flag;
361    int MAXTAG;
362    MPI_Attr_get(MPI_COMM_WORLD, MPI_TAG_UB, &tagub, &flag);
374  
375 <    if (flag) {
376 <      MAXTAG = *tagub;
377 <    } else {
378 <      MAXTAG = 32767;
375 >    MPI_Comm_size( MPI_COMM_WORLD, &nProc);
376 >    MPI_Comm_rank( MPI_COMM_WORLD, &worldRank);
377 >
378 >
379 >    if (worldRank == masterNode) {      
380 >      os << "  <Snapshot>\n";  
381 >      writeFrameProperties(os,
382 >                           info_->getSnapshotManager()->getCurrentSnapshot());
383 >      os << "    <StuntDoubles>\n";
384      }
385  
386 <    if (worldRank == masterNode) { //master node (node 0) is responsible for writing the dump file
386 >    //every node prepares the dump lines for integrable objects belong to itself
387 >    std::string buffer;
388 >    for (mol = info_->beginMolecule(mi); mol != NULL;
389 >         mol = info_->nextMolecule(mi)) {
390 >      for (sd = mol->beginIntegrableObject(ii); sd != NULL;
391 >           sd = mol->nextIntegrableObject(ii)) {        
392 >        buffer += prepareDumpLine(sd);
393 >      }
394 >    }
395 >    
396 >    if (worldRank == masterNode) {      
397 >      os << buffer;
398 >      
399 >      for (int i = 1; i < nProc; ++i) {
400 >        // tell processor i to start sending us data:
401 >        MPI_Bcast(&i, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
402  
403 <      // Node 0 needs a list of the magic potatoes for each processor;
403 >        // receive the length of the string buffer that was
404 >        // prepared by processor i:        
405 >        int recvLength;
406 >        MPI_Recv(&recvLength, 1, MPI_INT, i, MPI_ANY_TAG, MPI_COMM_WORLD,
407 >                 &istatus);
408  
409 <      MPI_Comm_size(MPI_COMM_WORLD, &nProc);
410 <      potatoes = new int[nProc];
409 >        // create a buffer to receive the data
410 >        char* recvBuffer = new char[recvLength];
411 >        if (recvBuffer == NULL) {
412 >        } else {
413 >          // receive the data:
414 >          MPI_Recv(recvBuffer, recvLength, MPI_CHAR, i,
415 >                               MPI_ANY_TAG, MPI_COMM_WORLD, &istatus);
416 >          // send it to the file:
417 >          os << recvBuffer;
418 >          // get rid of the receive buffer:
419 >          delete [] recvBuffer;
420 >        }
421 >      }
422 >    } else {
423 >      int sendBufferLength = buffer.size() + 1;
424 >      int myturn = 0;
425 >      for (int i = 1; i < nProc; ++i){
426 >        // wait for the master node to call our number:
427 >        MPI_Bcast(&myturn, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
428 >        if (myturn == worldRank){
429 >          // send the length of our buffer:
430 >          MPI_Send(&sendBufferLength, 1, MPI_INT, masterNode, 0, MPI_COMM_WORLD);
431  
432 <      //write out the comment lines
433 <      for(int i = 0; i < nProc; i++) {
434 <        potatoes[i] = 0;
432 >          // send our buffer:
433 >          MPI_Send((void *)buffer.c_str(), sendBufferLength,
434 >                   MPI_CHAR, masterNode, 0, MPI_COMM_WORLD);
435 >
436 >        }
437        }
438 +    }
439 +    
440 +    if (worldRank == masterNode) {      
441 +      os << "    </StuntDoubles>\n";
442 +    }
443  
444 +    if (doSiteData_) {
445 +      if (worldRank == masterNode) {
446 +        os << "    <SiteData>\n";
447 +      }
448 +      buffer.clear();
449 +      for (mol = info_->beginMolecule(mi); mol != NULL;
450 +           mol = info_->nextMolecule(mi)) {
451 +              
452 +        for (sd = mol->beginIntegrableObject(ii); sd != NULL;  
453 +             sd = mol->nextIntegrableObject(ii)) {      
454 +          
455 +          int ioIndex = sd->getGlobalIntegrableObjectIndex();
456 +          // do one for the IO itself
457 +          buffer += prepareSiteLine(sd, ioIndex, 0);
458  
459 <      os << nTotObjects << "\n";
460 <      writeCommentLine(os, info_->getSnapshotManager()->getCurrentSnapshot());
459 >          if (sd->isRigidBody()) {
460 >            
461 >            RigidBody* rb = static_cast<RigidBody*>(sd);
462 >            int siteIndex = 0;
463 >            for (Atom* atom = rb->beginAtom(ai); atom != NULL;  
464 >                 atom = rb->nextAtom(ai)) {                                            
465 >              buffer += prepareSiteLine(atom, ioIndex, siteIndex);
466 >              siteIndex++;
467 >            }
468 >          }
469 >        }
470 >      }
471  
472 <      for(int i = 0; i < info_->getNGlobalMolecules(); i++) {
472 >      if (worldRank == masterNode) {    
473 >        os << buffer;
474 >        
475 >        for (int i = 1; i < nProc; ++i) {
476 >          
477 >          // tell processor i to start sending us data:
478 >          MPI_Bcast(&i, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
479 >          
480 >          // receive the length of the string buffer that was
481 >          // prepared by processor i:        
482 >          int recvLength;
483 >          MPI_Recv(&recvLength, 1, MPI_INT, i, MPI_ANY_TAG, MPI_COMM_WORLD,
484 >                   &istatus);
485 >          
486 >          // create a buffer to receive the data
487 >          char* recvBuffer = new char[recvLength];
488 >          if (recvBuffer == NULL) {
489 >          } else {
490 >            // receive the data:
491 >            MPI_Recv(recvBuffer, recvLength, MPI_CHAR, i,
492 >                     MPI_ANY_TAG, MPI_COMM_WORLD, &istatus);
493 >            // send it to the file:
494 >            os << recvBuffer;
495 >            // get rid of the receive buffer:
496 >            delete [] recvBuffer;
497 >          }
498 >        }      
499 >      } else {
500 >        int sendBufferLength = buffer.size() + 1;
501 >        int myturn = 0;
502 >        for (int i = 1; i < nProc; ++i){
503 >          // wait for the master node to call our number:
504 >          MPI_Bcast(&myturn, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
505 >          if (myturn == worldRank){
506 >            // send the length of our buffer:
507 >            MPI_Send(&sendBufferLength, 1, MPI_INT, masterNode, 0, MPI_COMM_WORLD);
508 >            // send our buffer:
509 >            MPI_Send((void *)buffer.c_str(), sendBufferLength,
510 >                     MPI_CHAR, masterNode, 0, MPI_COMM_WORLD);
511 >          }
512 >        }
513 >      }
514 >      
515 >      if (worldRank == masterNode) {    
516 >        os << "    </SiteData>\n";
517 >      }
518 >    }
519 >    
520 >    if (worldRank == masterNode) {
521 >      os << "  </Snapshot>\n";
522 >      os.flush();
523 >    }
524 >    
525 > #endif // is_mpi
526 >    
527 >  }
528  
529 <        // Get the Node number which has this atom;
529 >  std::string DumpWriter::prepareDumpLine(StuntDouble* sd) {
530 >        
531 >    int index = sd->getGlobalIntegrableObjectIndex();
532 >    std::string type("pv");
533 >    std::string line;
534 >    char tempBuffer[4096];
535  
536 <        which_node = info_->getMolToProc(i);
536 >    Vector3d pos;
537 >    Vector3d vel;
538 >    pos = sd->getPos();
539  
540 <        if (which_node != masterNode) { //current molecule is in slave node
541 <          if (potatoes[which_node] + 1 >= MAXTAG) {
542 <            // The potato was going to exceed the maximum value,
543 <            // so wrap this processor potato back to 0:        
540 >    if (isinf(pos[0]) || isnan(pos[0]) ||
541 >        isinf(pos[1]) || isnan(pos[1]) ||
542 >        isinf(pos[2]) || isnan(pos[2]) ) {      
543 >      sprintf( painCave.errMsg,
544 >               "DumpWriter detected a numerical error writing the position"
545 >               " for object %d", index);      
546 >      painCave.isFatal = 1;
547 >      simError();
548 >    }
549  
550 <            potatoes[which_node] = 0;
398 <            MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node, 0,
399 <                     MPI_COMM_WORLD);
400 <          }
550 >    vel = sd->getVel();        
551  
552 <          myPotato = potatoes[which_node];
552 >    if (isinf(vel[0]) || isnan(vel[0]) ||
553 >        isinf(vel[1]) || isnan(vel[1]) ||
554 >        isinf(vel[2]) || isnan(vel[2]) ) {      
555 >      sprintf( painCave.errMsg,
556 >               "DumpWriter detected a numerical error writing the velocity"
557 >               " for object %d", index);      
558 >      painCave.isFatal = 1;
559 >      simError();
560 >    }
561 >
562 >    sprintf(tempBuffer, "%18.10g %18.10g %18.10g %13e %13e %13e",
563 >            pos[0], pos[1], pos[2],
564 >            vel[0], vel[1], vel[2]);                    
565 >    line += tempBuffer;
566  
567 <          //recieve the number of integrableObject in current molecule
568 <          MPI_Recv(&nCurObj, 1, MPI_INT, which_node, myPotato,
569 <                   MPI_COMM_WORLD, &istatus);
570 <          myPotato++;
567 >    if (sd->isDirectional()) {
568 >      type += "qj";
569 >      Quat4d q;
570 >      Vector3d ji;
571 >      q = sd->getQ();
572  
573 <          for(int l = 0; l < nCurObj; l++) {
574 <            if (potatoes[which_node] + 2 >= MAXTAG) {
575 <              // The potato was going to exceed the maximum value,
576 <              // so wrap this processor potato back to 0:        
573 >      if (isinf(q[0]) || isnan(q[0]) ||
574 >          isinf(q[1]) || isnan(q[1]) ||
575 >          isinf(q[2]) || isnan(q[2]) ||
576 >          isinf(q[3]) || isnan(q[3]) ) {      
577 >        sprintf( painCave.errMsg,
578 >                 "DumpWriter detected a numerical error writing the quaternion"
579 >                 " for object %d", index);      
580 >        painCave.isFatal = 1;
581 >        simError();
582 >      }
583  
584 <              potatoes[which_node] = 0;
415 <              MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node,
416 <                       0, MPI_COMM_WORLD);
417 <            }
584 >      ji = sd->getJ();
585  
586 <            MPI_Recv(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR,
587 <                     which_node, myPotato, MPI_COMM_WORLD,
588 <                     &istatus);
586 >      if (isinf(ji[0]) || isnan(ji[0]) ||
587 >          isinf(ji[1]) || isnan(ji[1]) ||
588 >          isinf(ji[2]) || isnan(ji[2]) ) {      
589 >        sprintf( painCave.errMsg,
590 >                 "DumpWriter detected a numerical error writing the angular"
591 >                 " momentum for object %d", index);      
592 >        painCave.isFatal = 1;
593 >        simError();
594 >      }
595  
596 <            myPotato++;
596 >      sprintf(tempBuffer, " %13e %13e %13e %13e %13e %13e %13e",
597 >              q[0], q[1], q[2], q[3],
598 >              ji[0], ji[1], ji[2]);
599 >      line += tempBuffer;
600 >    }
601  
602 <            MPI_Recv(atomData, 19, MPI_REALTYPE, which_node, myPotato,
603 <                     MPI_COMM_WORLD, &istatus);
604 <            myPotato++;
602 >    if (needForceVector_) {
603 >      type += "f";
604 >      Vector3d frc = sd->getFrc();
605 >      if (isinf(frc[0]) || isnan(frc[0]) ||
606 >          isinf(frc[1]) || isnan(frc[1]) ||
607 >          isinf(frc[2]) || isnan(frc[2]) ) {      
608 >        sprintf( painCave.errMsg,
609 >                 "DumpWriter detected a numerical error writing the force"
610 >                 " for object %d", index);      
611 >        painCave.isFatal = 1;
612 >        simError();
613 >      }
614 >      sprintf(tempBuffer, " %13e %13e %13e",
615 >              frc[0], frc[1], frc[2]);
616 >      line += tempBuffer;
617 >      
618 >      if (sd->isDirectional()) {
619 >        type += "t";
620 >        Vector3d trq = sd->getTrq();        
621 >        if (isinf(trq[0]) || isnan(trq[0]) ||
622 >            isinf(trq[1]) || isnan(trq[1]) ||
623 >            isinf(trq[2]) || isnan(trq[2]) ) {      
624 >          sprintf( painCave.errMsg,
625 >                   "DumpWriter detected a numerical error writing the torque"
626 >                   " for object %d", index);      
627 >          painCave.isFatal = 1;
628 >          simError();
629 >        }        
630 >        sprintf(tempBuffer, " %13e %13e %13e",
631 >                trq[0], trq[1], trq[2]);
632 >        line += tempBuffer;
633 >      }      
634 >    }
635  
636 <            MPI_Get_count(&istatus, MPI_REALTYPE, &msgLen);
636 >    sprintf(tempBuffer, "%10d %7s %s\n", index, type.c_str(), line.c_str());
637 >    return std::string(tempBuffer);
638 >  }
639  
640 <            if (msgLen == 13 || msgLen == 19)
641 <              isDirectional = 1;
433 <            else
434 <              isDirectional = 0;
640 >  std::string DumpWriter::prepareSiteLine(StuntDouble* sd, int ioIndex, int siteIndex) {
641 >    int storageLayout = info_->getSnapshotManager()->getStorageLayout();
642  
643 <            // If we've survived to here, format the line:
643 >    std::string id;
644 >    std::string type;
645 >    std::string line;
646 >    char tempBuffer[4096];
647  
648 <            if (!isDirectional) {
649 <              sprintf(writeLine, "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
650 <                      MPIatomTypeString, atomData[0],
651 <                      atomData[1], atomData[2],
652 <                      atomData[3], atomData[4],
653 <                      atomData[5]);
648 >    if (sd->isRigidBody()) {
649 >      sprintf(tempBuffer, "%10d           ", ioIndex);
650 >      id = std::string(tempBuffer);
651 >    } else {
652 >      sprintf(tempBuffer, "%10d %10d", ioIndex, siteIndex);
653 >      id = std::string(tempBuffer);
654 >    }
655 >              
656 >    if (needFlucQ_) {
657 >      if (storageLayout & DataStorage::dslFlucQPosition) {
658 >        type += "c";
659 >        RealType fqPos = sd->getFlucQPos();
660 >        if (isinf(fqPos) || isnan(fqPos) ) {      
661 >          sprintf( painCave.errMsg,
662 >                   "DumpWriter detected a numerical error writing the"
663 >                   " fluctuating charge for object %s", id.c_str());      
664 >          painCave.isFatal = 1;
665 >          simError();
666 >        }
667 >        sprintf(tempBuffer, " %13e ", fqPos);
668 >        line += tempBuffer;
669 >      }
670  
671 <              strcat(writeLine,
672 <                     "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0");
673 <            } else {
674 <              sprintf(writeLine,
675 <                      "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
676 <                      MPIatomTypeString,
677 <                      atomData[0],
678 <                      atomData[1],
679 <                      atomData[2],
680 <                      atomData[3],
681 <                      atomData[4],
682 <                      atomData[5],
683 <                      atomData[6],
458 <                      atomData[7],
459 <                      atomData[8],
460 <                      atomData[9],
461 <                      atomData[10],
462 <                      atomData[11],
463 <                      atomData[12]);
464 <            }
465 <            
466 <            if (needForceVector_) {
467 <              if (!isDirectional) {
468 <                sprintf(writeLine, "\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
469 <                        atomData[6],
470 <                        atomData[7],
471 <                        atomData[8],
472 <                        atomData[9],
473 <                        atomData[10],
474 <                        atomData[11]);
475 <              } else {
476 <                sprintf(writeLine, "\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
477 <                        atomData[13],
478 <                        atomData[14],
479 <                        atomData[15],
480 <                        atomData[16],
481 <                        atomData[17],
482 <                        atomData[18]);
483 <              }
484 <            }
671 >      if (storageLayout & DataStorage::dslFlucQVelocity) {
672 >        type += "w";    
673 >        RealType fqVel = sd->getFlucQVel();
674 >        if (isinf(fqVel) || isnan(fqVel) ) {      
675 >          sprintf( painCave.errMsg,
676 >                   "DumpWriter detected a numerical error writing the"
677 >                   " fluctuating charge velocity for object %s", id.c_str());      
678 >          painCave.isFatal = 1;
679 >          simError();
680 >        }
681 >        sprintf(tempBuffer, " %13e ", fqVel);
682 >        line += tempBuffer;
683 >      }
684  
685 <            sprintf(writeLine, "\n");
686 <            os << writeLine;
687 <
688 <          } // end for(int l =0)
689 <
690 <          potatoes[which_node] = myPotato;
691 <        } else { //master node has current molecule
692 <
693 <          mol = info_->getMoleculeByGlobalIndex(i);
694 <
695 <          if (mol == NULL) {
696 <            sprintf(painCave.errMsg, "Molecule not found on node %d!", worldRank);
697 <            painCave.isFatal = 1;
698 <            simError();
500 <          }
501 <                
502 <          for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
503 <               integrableObject = mol->nextIntegrableObject(ii)) {      
504 <
505 <            pos = integrableObject->getPos();
506 <            vel = integrableObject->getVel();
507 <
508 <            atomData[0] = pos[0];
509 <            atomData[1] = pos[1];
510 <            atomData[2] = pos[2];
511 <
512 <            atomData[3] = vel[0];
513 <            atomData[4] = vel[1];
514 <            atomData[5] = vel[2];
515 <
516 <            isDirectional = 0;
517 <
518 <            if (integrableObject->isDirectional()) {
519 <              isDirectional = 1;
520 <
521 <              q = integrableObject->getQ();
522 <              ji = integrableObject->getJ();
523 <
524 <              for(int j = 0; j < 6; j++) {
525 <                atomData[j] = atomData[j];
526 <              }
527 <
528 <              atomData[6] = q[0];
529 <              atomData[7] = q[1];
530 <              atomData[8] = q[2];
531 <              atomData[9] = q[3];
532 <
533 <              atomData[10] = ji[0];
534 <              atomData[11] = ji[1];
535 <              atomData[12] = ji[2];
536 <            }
537 <
538 <            if (needForceVector_) {
539 <              frc = integrableObject->getFrc();
540 <              trq = integrableObject->getTrq();
541 <
542 <              if (!isDirectional) {
543 <                atomData[6] = frc[0];
544 <                atomData[7] = frc[1];
545 <                atomData[8] = frc[2];
546 <                atomData[9] = trq[0];
547 <                atomData[10] = trq[1];
548 <                atomData[11] = trq[2];
549 <              } else {
550 <                atomData[13] = frc[0];
551 <                atomData[14] = frc[1];
552 <                atomData[15] = frc[2];
553 <                atomData[16] = trq[0];
554 <                atomData[17] = trq[1];
555 <                atomData[18] = trq[2];
556 <              }
557 <            }
558 <
559 <            // If we've survived to here, format the line:
560 <
561 <            if (!isDirectional) {
562 <              sprintf(writeLine, "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
563 <                      integrableObject->getType().c_str(), atomData[0],
564 <                      atomData[1], atomData[2],
565 <                      atomData[3], atomData[4],
566 <                      atomData[5]);
567 <
568 <              strcat(writeLine,
569 <                     "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0");
570 <            } else {
571 <              sprintf(writeLine,
572 <                      "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
573 <                      integrableObject->getType().c_str(),
574 <                      atomData[0],
575 <                      atomData[1],
576 <                      atomData[2],
577 <                      atomData[3],
578 <                      atomData[4],
579 <                      atomData[5],
580 <                      atomData[6],
581 <                      atomData[7],
582 <                      atomData[8],
583 <                      atomData[9],
584 <                      atomData[10],
585 <                      atomData[11],
586 <                      atomData[12]);
587 <            }
588 <
589 <            if (needForceVector_) {
590 <              if (!isDirectional) {
591 <              sprintf(writeLine, "\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
592 <                      atomData[6],
593 <                      atomData[7],
594 <                      atomData[8],
595 <                      atomData[9],
596 <                      atomData[10],
597 <                      atomData[11]);
598 <              } else {
599 <                sprintf(writeLine, "\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
600 <                        atomData[13],
601 <                        atomData[14],
602 <                        atomData[15],
603 <                        atomData[16],
604 <                        atomData[17],
605 <                        atomData[18]);
606 <              }
607 <            }
608 <
609 <            os << writeLine << "\n";
610 <
611 <          } //end for(iter = integrableObject.begin())
612 <        }
613 <      } //end for(i = 0; i < mpiSim->getNmol())
614 <
615 <      os.flush();
616 <        
617 <      sprintf(checkPointMsg, "Sucessfully took a dump.\n");
618 <      MPIcheckPoint();
619 <
620 <      delete [] potatoes;
621 <    } else {
622 <
623 <      // worldRank != 0, so I'm a remote node.  
624 <
625 <      // Set my magic potato to 0:
626 <
627 <      myPotato = 0;
628 <
629 <      for(int i = 0; i < info_->getNGlobalMolecules(); i++) {
630 <
631 <        // Am I the node which has this integrableObject?
632 <        int whichNode = info_->getMolToProc(i);
633 <        if (whichNode == worldRank) {
634 <          if (myPotato + 1 >= MAXTAG) {
635 <
636 <            // The potato was going to exceed the maximum value,
637 <            // so wrap this processor potato back to 0 (and block until
638 <            // node 0 says we can go:
639 <
640 <            MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,
641 <                     &istatus);
642 <          }
643 <
644 <          mol = info_->getMoleculeByGlobalIndex(i);
645 <
646 <                
647 <          nCurObj = mol->getNIntegrableObjects();
648 <
649 <          MPI_Send(&nCurObj, 1, MPI_INT, 0, myPotato, MPI_COMM_WORLD);
650 <          myPotato++;
651 <
652 <          for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
653 <               integrableObject = mol->nextIntegrableObject(ii)) {
654 <
655 <            if (myPotato + 2 >= MAXTAG) {
656 <
657 <              // The potato was going to exceed the maximum value,
658 <              // so wrap this processor potato back to 0 (and block until
659 <              // node 0 says we can go:
660 <
661 <              MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,
662 <                       &istatus);
663 <            }
664 <
665 <            pos = integrableObject->getPos();
666 <            vel = integrableObject->getVel();
667 <
668 <            atomData[0] = pos[0];
669 <            atomData[1] = pos[1];
670 <            atomData[2] = pos[2];
671 <
672 <            atomData[3] = vel[0];
673 <            atomData[4] = vel[1];
674 <            atomData[5] = vel[2];
675 <
676 <            isDirectional = 0;
677 <
678 <            if (integrableObject->isDirectional()) {
679 <              isDirectional = 1;
680 <
681 <              q = integrableObject->getQ();
682 <              ji = integrableObject->getJ();
683 <
684 <              atomData[6] = q[0];
685 <              atomData[7] = q[1];
686 <              atomData[8] = q[2];
687 <              atomData[9] = q[3];
688 <
689 <              atomData[10] = ji[0];
690 <              atomData[11] = ji[1];
691 <              atomData[12] = ji[2];
692 <            }
693 <
694 <            if (needForceVector_) {
695 <              frc = integrableObject->getFrc();
696 <              trq = integrableObject->getTrq();
697 <              
698 <              if (!isDirectional) {
699 <                atomData[6] = frc[0];
700 <                atomData[7] = frc[1];
701 <                atomData[8] = frc[2];
702 <                
703 <                atomData[9] = trq[0];
704 <                atomData[10] = trq[1];
705 <                atomData[11] = trq[2];
706 <              } else {
707 <                atomData[13] = frc[0];
708 <                atomData[14] = frc[1];
709 <                atomData[15] = frc[2];
710 <                
711 <                atomData[16] = trq[0];
712 <                atomData[17] = trq[1];
713 <                atomData[18] = trq[2];
714 <              }
715 <            }
716 <
717 <            strncpy(MPIatomTypeString, integrableObject->getType().c_str(), MINIBUFFERSIZE);
718 <
719 <            // null terminate the  std::string before sending (just in case):
720 <            MPIatomTypeString[MINIBUFFERSIZE - 1] = '\0';
721 <
722 <            MPI_Send(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR, 0,
723 <                     myPotato, MPI_COMM_WORLD);
724 <
725 <            myPotato++;
726 <
727 <            if (isDirectional && needForceVector_) {
728 <              MPI_Send(atomData, 19, MPI_REALTYPE, 0, myPotato,
729 <                       MPI_COMM_WORLD);
730 <            } else if (isDirectional) {
731 <              MPI_Send(atomData, 13, MPI_REALTYPE, 0, myPotato,
732 <                       MPI_COMM_WORLD);
733 <            } else if (needForceVector_) {
734 <              MPI_Send(atomData, 12, MPI_REALTYPE, 0, myPotato,
735 <                       MPI_COMM_WORLD);
736 <            } else {
737 <              MPI_Send(atomData, 6, MPI_REALTYPE, 0, myPotato,
738 <                       MPI_COMM_WORLD);
739 <            }
740 <
741 <            myPotato++;
742 <          }
743 <                    
744 <        }
745 <            
685 >      if (needForceVector_) {
686 >        if (storageLayout & DataStorage::dslFlucQForce) {          
687 >          type += "g";
688 >          RealType fqFrc = sd->getFlucQFrc();        
689 >          if (isinf(fqFrc) || isnan(fqFrc) ) {      
690 >            sprintf( painCave.errMsg,
691 >                     "DumpWriter detected a numerical error writing the"
692 >                     " fluctuating charge force for object %s", id.c_str());      
693 >            painCave.isFatal = 1;
694 >            simError();
695 >          }
696 >          sprintf(tempBuffer, " %13e ", fqFrc);        
697 >          line += tempBuffer;
698 >        }
699        }
747      sprintf(checkPointMsg, "Sucessfully took a dump.\n");
748      MPIcheckPoint();
700      }
701 +    
702 +    if (needElectricField_) {
703 +      if (storageLayout & DataStorage::dslElectricField) {
704 +        type += "e";
705 +        Vector3d eField= sd->getElectricField();
706 +        if (isinf(eField[0]) || isnan(eField[0]) ||
707 +            isinf(eField[1]) || isnan(eField[1]) ||
708 +            isinf(eField[2]) || isnan(eField[2]) ) {      
709 +          sprintf( painCave.errMsg,
710 +                   "DumpWriter detected a numerical error writing the electric"
711 +                   " field for object %s", id.c_str());      
712 +          painCave.isFatal = 1;
713 +          simError();
714 +        }
715 +        sprintf(tempBuffer, " %13e %13e %13e",
716 +                eField[0], eField[1], eField[2]);
717 +        line += tempBuffer;
718 +      }
719 +    }
720  
721 < #endif // is_mpi
722 <
721 >    if (needSitePotential_) {
722 >      if (storageLayout & DataStorage::dslSitePotential) {          
723 >        type += "s";
724 >        RealType sPot = sd->getSitePotential();        
725 >        if (isinf(sPot) || isnan(sPot) ) {      
726 >          sprintf( painCave.errMsg,
727 >                   "DumpWriter detected a numerical error writing the"
728 >                   " site potential for object %s", id.c_str());      
729 >          painCave.isFatal = 1;
730 >          simError();
731 >        }
732 >        sprintf(tempBuffer, " %13e ", sPot);        
733 >        line += tempBuffer;
734 >      }
735 >    }    
736 >    
737 >    if (needParticlePot_) {
738 >      if (storageLayout & DataStorage::dslParticlePot) {
739 >        type += "u";
740 >        RealType particlePot = sd->getParticlePot();
741 >        if (isinf(particlePot) || isnan(particlePot)) {      
742 >          sprintf( painCave.errMsg,
743 >                   "DumpWriter detected a numerical error writing the particle "
744 >                   " potential for object %s", id.c_str());      
745 >          painCave.isFatal = 1;
746 >          simError();
747 >        }
748 >        sprintf(tempBuffer, " %13e", particlePot);
749 >        line += tempBuffer;
750 >      }
751 >    }
752 >  
753 >    sprintf(tempBuffer, "%s %7s %s\n", id.c_str(), type.c_str(), line.c_str());
754 >    return std::string(tempBuffer);
755    }
756  
757    void DumpWriter::writeDump() {
# Line 757 | Line 759 | namespace oopse {
759    }
760  
761    void DumpWriter::writeEor() {
762 <    std::ostream* eorStream;
763 <    
762 >
763 >    std::ostream* eorStream = NULL;
764 >
765   #ifdef IS_MPI
766      if (worldRank == 0) {
767   #endif // is_mpi
768 <
768 >      
769        eorStream = createOStream(eorFilename_);
770  
771   #ifdef IS_MPI
772      }
773 < #endif // is_mpi    
774 <
773 > #endif
774 >    
775      writeFrame(*eorStream);
776 <
776 >      
777   #ifdef IS_MPI
778      if (worldRank == 0) {
779 < #endif // is_mpi
780 <    delete eorStream;
781 <
779 > #endif
780 >      
781 >      writeClosing(*eorStream);
782 >      delete eorStream;
783 >      
784   #ifdef IS_MPI
785      }
786   #endif // is_mpi  
# Line 789 | Line 794 | namespace oopse {
794   #ifdef IS_MPI
795      if (worldRank == 0) {
796   #endif // is_mpi
792
797        buffers.push_back(dumpFile_->rdbuf());
794
798        eorStream = createOStream(eorFilename_);
796
799        buffers.push_back(eorStream->rdbuf());
798        
800   #ifdef IS_MPI
801      }
802   #endif // is_mpi    
803  
804      TeeBuf tbuf(buffers.begin(), buffers.end());
805      std::ostream os(&tbuf);
805
806      writeFrame(os);
807  
808   #ifdef IS_MPI
809      if (worldRank == 0) {
810   #endif // is_mpi
811 <    delete eorStream;
812 <
811 >      writeClosing(*eorStream);
812 >      delete eorStream;
813   #ifdef IS_MPI
814      }
815 < #endif // is_mpi  
816 <    
815 > #endif // is_mpi      
816    }
817  
818 < std::ostream* DumpWriter::createOStream(const std::string& filename) {
818 >  std::ostream* DumpWriter::createOStream(const std::string& filename) {
819  
820      std::ostream* newOStream;
821 < #ifdef HAVE_LIBZ
821 > #ifdef HAVE_ZLIB
822      if (needCompression_) {
823 <        newOStream = new ogzstream(filename.c_str());
823 >      newOStream = new ogzstream(filename.c_str());
824      } else {
825 <        newOStream = new std::ofstream(filename.c_str());
825 >      newOStream = new std::ofstream(filename.c_str());
826      }
827   #else
828      newOStream = new std::ofstream(filename.c_str());
829   #endif
830 +    //write out MetaData first
831 +    (*newOStream) << "<OpenMD version=2>" << std::endl;
832 +    (*newOStream) << "  <MetaData>" << std::endl;
833 +    (*newOStream) << info_->getRawMetaData();
834 +    (*newOStream) << "  </MetaData>" << std::endl;
835      return newOStream;
836 < }
836 >  }
837  
838 < }//end namespace oopse
838 >  void DumpWriter::writeClosing(std::ostream& os) {
839 >
840 >    os << "</OpenMD>\n";
841 >    os.flush();
842 >  }
843 >
844 > }//end namespace OpenMD

Comparing trunk/src/io/DumpWriter.cpp (property svn:keywords):
Revision 965 by tim, Fri May 19 20:45:55 2006 UTC vs.
Revision 1993 by gezelter, Tue Apr 29 17:32:31 2014 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines