ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/io/DumpWriter.cpp
(Generate patch)

Comparing trunk/src/io/DumpWriter.cpp (file contents):
Revision 963 by tim, Wed May 17 21:51:42 2006 UTC vs.
Revision 1971 by gezelter, Fri Feb 28 13:25:13 2014 UTC

# Line 1 | Line 1
1   /*
2 < * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
2 > * Copyright (c) 2009 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
5   * non-exclusive, royalty free, license to use, modify and
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42 +
43 + #include "config.h"
44 +
45 + #ifdef IS_MPI
46 + #include <mpi.h>
47 + #endif
48  
49   #include "io/DumpWriter.hpp"
50   #include "primitives/Molecule.hpp"
51   #include "utils/simError.h"
52   #include "io/basic_teebuf.hpp"
53 + #ifdef HAVE_ZLIB
54   #include "io/gzstream.hpp"
55 + #endif
56   #include "io/Globals.hpp"
57  
58 < #ifdef IS_MPI
59 < #include <mpi.h>
60 < #endif //is_mpi
58 > #ifdef _MSC_VER
59 > #define isnan(x) _isnan((x))
60 > #define isinf(x) (!_finite(x) && !_isnan(x))
61 > #endif
62  
63 < namespace oopse {
63 > using namespace std;
64 > namespace OpenMD {
65  
66    DumpWriter::DumpWriter(SimInfo* info)
67      : info_(info), filename_(info->getDumpFileName()), eorFilename_(info->getFinalConfigFileName()){
68  
69      Globals* simParams = info->getSimParams();
70 <    needCompression_ = simParams->getCompressDumpFile();
71 <    needForceVector_ = simParams->getOutputForceVector();
70 >    needCompression_   = simParams->getCompressDumpFile();
71 >    needForceVector_   = simParams->getOutputForceVector();
72 >    needParticlePot_   = simParams->getOutputParticlePotential();
73 >    needFlucQ_         = simParams->getOutputFluctuatingCharges();
74 >    needElectricField_ = simParams->getOutputElectricField();
75 >
76 >    if (needParticlePot_ || needFlucQ_ || needElectricField_) {
77 >      doSiteData_ = true;
78 >    } else {
79 >      doSiteData_ = false;
80 >    }
81 >
82      createDumpFile_ = true;
83   #ifdef HAVE_LIBZ
84      if (needCompression_) {
85 <        filename_ += ".gz";
86 <        eorFilename_ += ".gz";
85 >      filename_ += ".gz";
86 >      eorFilename_ += ".gz";
87      }
88   #endif
89      
90   #ifdef IS_MPI
91  
92 <      if (worldRank == 0) {
92 >    if (worldRank == 0) {
93   #endif // is_mpi
73
94          
95 <        dumpFile_ = createOStream(filename_);
95 >      dumpFile_ = createOStream(filename_);
96  
97 <        if (!dumpFile_) {
98 <          sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
99 <                  filename_.c_str());
100 <          painCave.isFatal = 1;
101 <          simError();
102 <        }
97 >      if (!dumpFile_) {
98 >        sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
99 >                filename_.c_str());
100 >        painCave.isFatal = 1;
101 >        simError();
102 >      }
103  
104   #ifdef IS_MPI
105  
106 <      }
106 >    }
107  
88      sprintf(checkPointMsg, "Sucessfully opened output file for dumping.\n");
89      MPIcheckPoint();
90
108   #endif // is_mpi
109  
110 <    }
110 >  }
111  
112  
113    DumpWriter::DumpWriter(SimInfo* info, const std::string& filename)
# Line 99 | Line 116 | namespace oopse {
116      Globals* simParams = info->getSimParams();
117      eorFilename_ = filename_.substr(0, filename_.rfind(".")) + ".eor";    
118  
119 <    needCompression_ = simParams->getCompressDumpFile();
120 <    needForceVector_ = simParams->getOutputForceVector();
119 >    needCompression_   = simParams->getCompressDumpFile();
120 >    needForceVector_   = simParams->getOutputForceVector();
121 >    needParticlePot_   = simParams->getOutputParticlePotential();
122 >    needFlucQ_         = simParams->getOutputFluctuatingCharges();
123 >    needElectricField_ = simParams->getOutputElectricField();
124 >
125 >    if (needParticlePot_ || needFlucQ_ || needElectricField_) {
126 >      doSiteData_ = true;
127 >    } else {
128 >      doSiteData_ = false;
129 >    }
130 >
131      createDumpFile_ = true;
132   #ifdef HAVE_LIBZ
133      if (needCompression_) {
134 <        filename_ += ".gz";
135 <        eorFilename_ += ".gz";
134 >      filename_ += ".gz";
135 >      eorFilename_ += ".gz";
136      }
137   #endif
138      
139   #ifdef IS_MPI
140  
141 <      if (worldRank == 0) {
141 >    if (worldRank == 0) {
142   #endif // is_mpi
143  
144        
145 <        dumpFile_ = createOStream(filename_);
145 >      dumpFile_ = createOStream(filename_);
146  
147 <        if (!dumpFile_) {
148 <          sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
149 <                  filename_.c_str());
150 <          painCave.isFatal = 1;
151 <          simError();
152 <        }
147 >      if (!dumpFile_) {
148 >        sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
149 >                filename_.c_str());
150 >        painCave.isFatal = 1;
151 >        simError();
152 >      }
153  
154   #ifdef IS_MPI
155  
156 <      }
156 >    }
157  
131      sprintf(checkPointMsg, "Sucessfully opened output file for dumping.\n");
132      MPIcheckPoint();
133
158   #endif // is_mpi
159  
160 <    }
160 >  }
161    
162    DumpWriter::DumpWriter(SimInfo* info, const std::string& filename, bool writeDumpFile)
163 <  : info_(info), filename_(filename){
163 >    : info_(info), filename_(filename){
164      
165      Globals* simParams = info->getSimParams();
166      eorFilename_ = filename_.substr(0, filename_.rfind(".")) + ".eor";    
167      
168 <    needCompression_ = simParams->getCompressDumpFile();
169 <    needForceVector_ = simParams->getOutputForceVector();
170 <    
168 >    needCompression_   = simParams->getCompressDumpFile();
169 >    needForceVector_   = simParams->getOutputForceVector();
170 >    needParticlePot_   = simParams->getOutputParticlePotential();
171 >    needFlucQ_         = simParams->getOutputFluctuatingCharges();
172 >    needElectricField_ = simParams->getOutputElectricField();
173 >
174 >    if (needParticlePot_ || needFlucQ_ || needElectricField_) {
175 >      doSiteData_ = true;
176 >    } else {
177 >      doSiteData_ = false;
178 >    }
179 >
180   #ifdef HAVE_LIBZ
181      if (needCompression_) {
182        filename_ += ".gz";
# Line 170 | Line 203 | namespace oopse {
203   #ifdef IS_MPI
204        
205      }
206 +
207      
174    sprintf(checkPointMsg, "Sucessfully opened output file for dumping.\n");
175    MPIcheckPoint();
176    
208   #endif // is_mpi
209      
210    }
180  
181  
182  
183  
184  
211  
212    DumpWriter::~DumpWriter() {
213  
# Line 190 | Line 216 | namespace oopse {
216      if (worldRank == 0) {
217   #endif // is_mpi
218        if (createDumpFile_){
219 +        writeClosing(*dumpFile_);
220          delete dumpFile_;
221        }
222   #ifdef IS_MPI
# Line 200 | Line 227 | namespace oopse {
227  
228    }
229  
230 <  void DumpWriter::writeCommentLine(std::ostream& os, Snapshot* s) {
230 >  void DumpWriter::writeFrameProperties(std::ostream& os, Snapshot* s) {
231  
232 <    RealType currentTime;
233 <    Mat3x3d hmat;
234 <    RealType chi;
235 <    RealType integralOfChiDt;
236 <    Mat3x3d eta;
237 <    
238 <    currentTime = s->getTime();
232 >    char buffer[1024];
233 >
234 >    os << "    <FrameData>\n";
235 >
236 >    RealType currentTime = s->getTime();
237 >
238 >    if (isinf(currentTime) || isnan(currentTime)) {      
239 >      sprintf( painCave.errMsg,
240 >               "DumpWriter detected a numerical error writing the time");      
241 >      painCave.isFatal = 1;
242 >      simError();
243 >    }
244 >    
245 >    sprintf(buffer, "        Time: %.10g\n", currentTime);
246 >    os << buffer;
247 >
248 >    Mat3x3d hmat;
249      hmat = s->getHmat();
250 <    chi = s->getChi();
251 <    integralOfChiDt = s->getIntegralOfChiDt();
252 <    eta = s->getEta();
250 >
251 >    for (unsigned int i = 0; i < 3; i++) {
252 >      for (unsigned int j = 0; j < 3; j++) {
253 >        if (isinf(hmat(i,j)) || isnan(hmat(i,j))) {      
254 >          sprintf( painCave.errMsg,
255 >                   "DumpWriter detected a numerical error writing the box");
256 >          painCave.isFatal = 1;
257 >          simError();
258 >        }        
259 >      }
260 >    }
261      
262 <    os << currentTime << ";\t"
263 <       << hmat(0, 0) << "\t" << hmat(1, 0) << "\t" << hmat(2, 0) << ";\t"
264 <       << hmat(0, 1) << "\t" << hmat(1, 1) << "\t" << hmat(2, 1) << ";\t"
265 <       << hmat(0, 2) << "\t" << hmat(1, 2) << "\t" << hmat(2, 2) << ";\t";
262 >    sprintf(buffer, "        Hmat: {{ %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }}\n",
263 >            hmat(0, 0), hmat(1, 0), hmat(2, 0),
264 >            hmat(0, 1), hmat(1, 1), hmat(2, 1),
265 >            hmat(0, 2), hmat(1, 2), hmat(2, 2));
266 >    os << buffer;
267  
268 <    //write out additional parameters, such as chi and eta
268 >    pair<RealType, RealType> thermostat = s->getThermostat();
269  
270 <    os << chi << "\t" << integralOfChiDt << ";\t";
270 >    if (isinf(thermostat.first)  || isnan(thermostat.first) ||
271 >        isinf(thermostat.second) || isnan(thermostat.second)) {      
272 >      sprintf( painCave.errMsg,
273 >               "DumpWriter detected a numerical error writing the thermostat");
274 >      painCave.isFatal = 1;
275 >      simError();
276 >    }
277 >    sprintf(buffer, "  Thermostat: %.10g , %.10g\n", thermostat.first,
278 >            thermostat.second);
279 >    os << buffer;
280  
281 <    os << eta(0, 0) << "\t" << eta(1, 0) << "\t" << eta(2, 0) << ";\t"
282 <       << eta(0, 1) << "\t" << eta(1, 1) << "\t" << eta(2, 1) << ";\t"
283 <       << eta(0, 2) << "\t" << eta(1, 2) << "\t" << eta(2, 2) << ";";
284 <        
285 <    os << "\n";
281 >    Mat3x3d eta;
282 >    eta = s->getBarostat();
283 >
284 >    for (unsigned int i = 0; i < 3; i++) {
285 >      for (unsigned int j = 0; j < 3; j++) {
286 >        if (isinf(eta(i,j)) || isnan(eta(i,j))) {      
287 >          sprintf( painCave.errMsg,
288 >                   "DumpWriter detected a numerical error writing the barostat");
289 >          painCave.isFatal = 1;
290 >          simError();
291 >        }        
292 >      }
293 >    }
294 >
295 >    sprintf(buffer, "    Barostat: {{ %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }}\n",
296 >            eta(0, 0), eta(1, 0), eta(2, 0),
297 >            eta(0, 1), eta(1, 1), eta(2, 1),
298 >            eta(0, 2), eta(1, 2), eta(2, 2));
299 >    os << buffer;
300 >
301 >    os << "    </FrameData>\n";
302    }
303  
304    void DumpWriter::writeFrame(std::ostream& os) {
234    const int BUFFERSIZE = 2000;
235    const int MINIBUFFERSIZE = 100;
305  
306 <    char tempBuffer[BUFFERSIZE];
307 <    char writeLine[BUFFERSIZE];
306 > #ifdef IS_MPI
307 >    MPI_Status istatus;
308 > #endif
309  
240    Quat4d q;
241    Vector3d ji;
242    Vector3d pos;
243    Vector3d vel;
244    Vector3d frc;
245    Vector3d trq;
246
310      Molecule* mol;
311 <    StuntDouble* integrableObject;
311 >    StuntDouble* sd;
312      SimInfo::MoleculeIterator mi;
313      Molecule::IntegrableObjectIterator ii;
314 <  
252 <    int nTotObjects;    
253 <    nTotObjects = info_->getNGlobalIntegrableObjects();
314 >    RigidBody::AtomIterator ai;
315  
316   #ifndef IS_MPI
317 +    os << "  <Snapshot>\n";
318 +
319 +    writeFrameProperties(os, info_->getSnapshotManager()->getCurrentSnapshot());
320  
321 +    os << "    <StuntDoubles>\n";
322 +    for (mol = info_->beginMolecule(mi); mol != NULL;
323 +         mol = info_->nextMolecule(mi)) {
324 +      
325 +      for (sd = mol->beginIntegrableObject(ii); sd != NULL;  
326 +           sd = mol->nextIntegrableObject(ii)) {        
327 +          os << prepareDumpLine(sd);
328 +          
329 +      }
330 +    }    
331 +    os << "    </StuntDoubles>\n";
332  
333 <    os << nTotObjects << "\n";
334 <        
335 <    writeCommentLine(os, info_->getSnapshotManager()->getCurrentSnapshot());
333 >    if (doSiteData_) {
334 >      os << "    <SiteData>\n";
335 >      for (mol = info_->beginMolecule(mi); mol != NULL;
336 >           mol = info_->nextMolecule(mi)) {
337 >              
338 >        for (sd = mol->beginIntegrableObject(ii); sd != NULL;  
339 >           sd = mol->nextIntegrableObject(ii)) {        
340  
341 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
341 >          int ioIndex = sd->getGlobalIntegrableObjectIndex();
342 >          // do one for the IO itself
343 >          os << prepareSiteLine(sd, ioIndex, 0);
344  
345 <      for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
346 <           integrableObject = mol->nextIntegrableObject(ii)) {
347 <                
345 >          if (sd->isRigidBody()) {
346 >            
347 >            RigidBody* rb = static_cast<RigidBody*>(sd);
348 >            int siteIndex = 0;
349 >            for (Atom* atom = rb->beginAtom(ai); atom != NULL;  
350 >                 atom = rb->nextAtom(ai)) {                                            
351 >              os << prepareSiteLine(atom, ioIndex, siteIndex);
352 >              siteIndex++;
353 >            }
354 >          }
355 >        }
356 >      }    
357 >      os << "    </SiteData>\n";
358 >    }
359 >    os << "  </Snapshot>\n";
360  
361 <        pos = integrableObject->getPos();
362 <        vel = integrableObject->getVel();
361 >    os.flush();
362 > #else
363  
364 <        sprintf(tempBuffer, "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
365 <                integrableObject->getType().c_str(),
366 <                pos[0], pos[1], pos[2],
274 <                vel[0], vel[1], vel[2]);
364 >    const int masterNode = 0;
365 >    int worldRank;
366 >    int nProc;
367  
368 <        strcpy(writeLine, tempBuffer);
368 >    MPI_Comm_size( MPI_COMM_WORLD, &nProc);
369 >    MPI_Comm_rank( MPI_COMM_WORLD, &worldRank);
370  
278        if (integrableObject->isDirectional()) {
279          q = integrableObject->getQ();
280          ji = integrableObject->getJ();
371  
372 <          sprintf(tempBuffer, "%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
373 <                  q[0], q[1], q[2], q[3],
374 <                  ji[0], ji[1], ji[2]);
375 <          strcat(writeLine, tempBuffer);
376 <        } else {
377 <          strcat(writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0");
288 <        }
372 >    if (worldRank == masterNode) {      
373 >      os << "  <Snapshot>\n";  
374 >      writeFrameProperties(os,
375 >                           info_->getSnapshotManager()->getCurrentSnapshot());
376 >      os << "    <StuntDoubles>\n";
377 >    }
378  
379 <        if (needForceVector_) {
380 <          frc = integrableObject->getFrc();
381 <          trq = integrableObject->getTrq();
382 <          
383 <          sprintf(tempBuffer, "\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
384 <                  frc[0], frc[1], frc[2],
385 <                  trq[0], trq[1], trq[2]);
297 <          strcat(writeLine, tempBuffer);
298 <        }
299 <        
300 <        strcat(writeLine, "\n");
301 <        os << writeLine;
302 <
379 >    //every node prepares the dump lines for integrable objects belong to itself
380 >    std::string buffer;
381 >    for (mol = info_->beginMolecule(mi); mol != NULL;
382 >         mol = info_->nextMolecule(mi)) {
383 >      for (sd = mol->beginIntegrableObject(ii); sd != NULL;
384 >           sd = mol->nextIntegrableObject(ii)) {        
385 >        buffer += prepareDumpLine(sd);
386        }
387      }
305
306    os.flush();
307 #else // is_mpi
308    /*********************************************************************
309     * Documentation?  You want DOCUMENTATION?
310     *
311     * Why all the potatoes below?  
312     *
313     * To make a long story short, the original version of DumpWriter
314     * worked in the most inefficient way possible.  Node 0 would
315     * poke each of the node for an individual atom's formatted data
316     * as node 0 worked its way down the global index. This was particularly
317     * inefficient since the method blocked all processors at every atom
318     * (and did it twice!).
319     *
320     * An intermediate version of DumpWriter could be described from Node
321     * zero's perspective as follows:
322     *
323     *  1) Have 100 of your friends stand in a circle.
324     *  2) When you say go, have all of them start tossing potatoes at
325     *     you (one at a time).
326     *  3) Catch the potatoes.
327     *
328     * It was an improvement, but MPI has buffers and caches that could
329     * best be described in this analogy as "potato nets", so there's no
330     * need to block the processors atom-by-atom.
331     *
332     * This new and improved DumpWriter works in an even more efficient
333     * way:
334     *
335     *  1) Have 100 of your friend stand in a circle.
336     *  2) When you say go, have them start tossing 5-pound bags of
337     *     potatoes at you.
338     *  3) Once you've caught a friend's bag of potatoes,
339     *     toss them a spud to let them know they can toss another bag.
340     *
341     * How's THAT for documentation?
342     *
343     *********************************************************************/
344    const int masterNode = 0;
345
346    int * potatoes;
347    int myPotato;
348    int nProc;
349    int which_node;
350    RealType atomData[19];
351    int isDirectional;
352    char MPIatomTypeString[MINIBUFFERSIZE];
353    int msgLen; // the length of message actually recieved at master nodes
354    int haveError;
355    MPI_Status istatus;
356    int nCurObj;
388      
389 <    // code to find maximum tag value
390 <    int * tagub;
391 <    int flag;
392 <    int MAXTAG;
393 <    MPI_Attr_get(MPI_COMM_WORLD, MPI_TAG_UB, &tagub, &flag);
389 >    if (worldRank == masterNode) {      
390 >      os << buffer;
391 >      
392 >      for (int i = 1; i < nProc; ++i) {
393 >        // tell processor i to start sending us data:
394 >        MPI_Bcast(&i, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
395  
396 <    if (flag) {
397 <      MAXTAG = *tagub;
396 >        // receive the length of the string buffer that was
397 >        // prepared by processor i:        
398 >        int recvLength;
399 >        MPI_Recv(&recvLength, 1, MPI_INT, i, MPI_ANY_TAG, MPI_COMM_WORLD,
400 >                 &istatus);
401 >
402 >        // create a buffer to receive the data
403 >        char* recvBuffer = new char[recvLength];
404 >        if (recvBuffer == NULL) {
405 >        } else {
406 >          // receive the data:
407 >          MPI_Recv(recvBuffer, recvLength, MPI_CHAR, i,
408 >                               MPI_ANY_TAG, MPI_COMM_WORLD, &istatus);
409 >          // send it to the file:
410 >          os << recvBuffer;
411 >          // get rid of the receive buffer:
412 >          delete [] recvBuffer;
413 >        }
414 >      }
415      } else {
416 <      MAXTAG = 32767;
417 <    }
416 >      int sendBufferLength = buffer.size() + 1;
417 >      int myturn = 0;
418 >      for (int i = 1; i < nProc; ++i){
419 >        // wait for the master node to call our number:
420 >        MPI_Bcast(&myturn, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
421 >        if (myturn == worldRank){
422 >          // send the length of our buffer:
423 >          MPI_Send(&sendBufferLength, 1, MPI_INT, masterNode, 0, MPI_COMM_WORLD);
424  
425 <    if (worldRank == masterNode) { //master node (node 0) is responsible for writing the dump file
425 >          // send our buffer:
426 >          MPI_Send((void *)buffer.c_str(), sendBufferLength,
427 >                   MPI_CHAR, masterNode, 0, MPI_COMM_WORLD);
428  
429 <      // Node 0 needs a list of the magic potatoes for each processor;
429 >        }
430 >      }
431 >    }
432 >    
433 >    if (worldRank == masterNode) {      
434 >      os << "    </StuntDoubles>\n";
435 >    }
436  
437 <      MPI_Comm_size(MPI_COMM_WORLD, &nProc);
438 <      potatoes = new int[nProc];
437 >    if (doSiteData_) {
438 >      if (worldRank == masterNode) {
439 >        os << "    <SiteData>\n";
440 >      }
441 >      buffer.clear();
442 >      for (mol = info_->beginMolecule(mi); mol != NULL;
443 >           mol = info_->nextMolecule(mi)) {
444 >              
445 >        for (sd = mol->beginIntegrableObject(ii); sd != NULL;  
446 >             sd = mol->nextIntegrableObject(ii)) {      
447 >          
448 >          int ioIndex = sd->getGlobalIntegrableObjectIndex();
449 >          // do one for the IO itself
450 >          buffer += prepareSiteLine(sd, ioIndex, 0);
451  
452 <      //write out the comment lines
453 <      for(int i = 0; i < nProc; i++) {
454 <        potatoes[i] = 0;
452 >          if (sd->isRigidBody()) {
453 >            
454 >            RigidBody* rb = static_cast<RigidBody*>(sd);
455 >            int siteIndex = 0;
456 >            for (Atom* atom = rb->beginAtom(ai); atom != NULL;  
457 >                 atom = rb->nextAtom(ai)) {                                            
458 >              buffer += prepareSiteLine(atom, ioIndex, siteIndex);
459 >              siteIndex++;
460 >            }
461 >          }
462 >        }
463        }
464  
465 +      if (worldRank == masterNode) {    
466 +        os << buffer;
467 +        
468 +        for (int i = 1; i < nProc; ++i) {
469 +          
470 +          // tell processor i to start sending us data:
471 +          MPI_Bcast(&i, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
472 +          
473 +          // receive the length of the string buffer that was
474 +          // prepared by processor i:        
475 +          int recvLength;
476 +          MPI_Recv(&recvLength, 1, MPI_INT, i, MPI_ANY_TAG, MPI_COMM_WORLD,
477 +                   &istatus);
478 +          
479 +          // create a buffer to receive the data
480 +          char* recvBuffer = new char[recvLength];
481 +          if (recvBuffer == NULL) {
482 +          } else {
483 +            // receive the data:
484 +            MPI_Recv(recvBuffer, recvLength, MPI_CHAR, i,
485 +                     MPI_ANY_TAG, MPI_COMM_WORLD, &istatus);
486 +            // send it to the file:
487 +            os << recvBuffer;
488 +            // get rid of the receive buffer:
489 +            delete [] recvBuffer;
490 +          }
491 +        }      
492 +      } else {
493 +        int sendBufferLength = buffer.size() + 1;
494 +        int myturn = 0;
495 +        for (int i = 1; i < nProc; ++i){
496 +          // wait for the master node to call our number:
497 +          MPI_Bcast(&myturn, 1, MPI_INT, masterNode, MPI_COMM_WORLD);
498 +          if (myturn == worldRank){
499 +            // send the length of our buffer:
500 +            MPI_Send(&sendBufferLength, 1, MPI_INT, masterNode, 0, MPI_COMM_WORLD);
501 +            // send our buffer:
502 +            MPI_Send((void *)buffer.c_str(), sendBufferLength,
503 +                     MPI_CHAR, masterNode, 0, MPI_COMM_WORLD);
504 +          }
505 +        }
506 +      }
507 +      
508 +      if (worldRank == masterNode) {    
509 +        os << "    </SiteData>\n";
510 +      }
511 +    }
512 +    
513 +    if (worldRank == masterNode) {
514 +      os << "  </Snapshot>\n";
515 +      os.flush();
516 +    }
517 +    
518 + #endif // is_mpi
519 +    
520 +  }
521  
522 <      os << nTotObjects << "\n";
523 <      writeCommentLine(os, info_->getSnapshotManager()->getCurrentSnapshot());
522 >  std::string DumpWriter::prepareDumpLine(StuntDouble* sd) {
523 >        
524 >    int index = sd->getGlobalIntegrableObjectIndex();
525 >    std::string type("pv");
526 >    std::string line;
527 >    char tempBuffer[4096];
528  
529 <      for(int i = 0; i < info_->getNGlobalMolecules(); i++) {
529 >    Vector3d pos;
530 >    Vector3d vel;
531 >    pos = sd->getPos();
532  
533 <        // Get the Node number which has this atom;
533 >    if (isinf(pos[0]) || isnan(pos[0]) ||
534 >        isinf(pos[1]) || isnan(pos[1]) ||
535 >        isinf(pos[2]) || isnan(pos[2]) ) {      
536 >      sprintf( painCave.errMsg,
537 >               "DumpWriter detected a numerical error writing the position"
538 >               " for object %d", index);      
539 >      painCave.isFatal = 1;
540 >      simError();
541 >    }
542  
543 <        which_node = info_->getMolToProc(i);
543 >    vel = sd->getVel();        
544  
545 <        if (which_node != masterNode) { //current molecule is in slave node
546 <          if (potatoes[which_node] + 1 >= MAXTAG) {
547 <            // The potato was going to exceed the maximum value,
548 <            // so wrap this processor potato back to 0:        
545 >    if (isinf(vel[0]) || isnan(vel[0]) ||
546 >        isinf(vel[1]) || isnan(vel[1]) ||
547 >        isinf(vel[2]) || isnan(vel[2]) ) {      
548 >      sprintf( painCave.errMsg,
549 >               "DumpWriter detected a numerical error writing the velocity"
550 >               " for object %d", index);      
551 >      painCave.isFatal = 1;
552 >      simError();
553 >    }
554  
555 <            potatoes[which_node] = 0;
556 <            MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node, 0,
557 <                     MPI_COMM_WORLD);
558 <          }
555 >    sprintf(tempBuffer, "%18.10g %18.10g %18.10g %13e %13e %13e",
556 >            pos[0], pos[1], pos[2],
557 >            vel[0], vel[1], vel[2]);                    
558 >    line += tempBuffer;
559  
560 <          myPotato = potatoes[which_node];
560 >    if (sd->isDirectional()) {
561 >      type += "qj";
562 >      Quat4d q;
563 >      Vector3d ji;
564 >      q = sd->getQ();
565  
566 <          //recieve the number of integrableObject in current molecule
567 <          MPI_Recv(&nCurObj, 1, MPI_INT, which_node, myPotato,
568 <                   MPI_COMM_WORLD, &istatus);
569 <          myPotato++;
566 >      if (isinf(q[0]) || isnan(q[0]) ||
567 >          isinf(q[1]) || isnan(q[1]) ||
568 >          isinf(q[2]) || isnan(q[2]) ||
569 >          isinf(q[3]) || isnan(q[3]) ) {      
570 >        sprintf( painCave.errMsg,
571 >                 "DumpWriter detected a numerical error writing the quaternion"
572 >                 " for object %d", index);      
573 >        painCave.isFatal = 1;
574 >        simError();
575 >      }
576  
577 <          for(int l = 0; l < nCurObj; l++) {
410 <            if (potatoes[which_node] + 2 >= MAXTAG) {
411 <              // The potato was going to exceed the maximum value,
412 <              // so wrap this processor potato back to 0:        
577 >      ji = sd->getJ();
578  
579 <              potatoes[which_node] = 0;
580 <              MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node,
581 <                       0, MPI_COMM_WORLD);
582 <            }
579 >      if (isinf(ji[0]) || isnan(ji[0]) ||
580 >          isinf(ji[1]) || isnan(ji[1]) ||
581 >          isinf(ji[2]) || isnan(ji[2]) ) {      
582 >        sprintf( painCave.errMsg,
583 >                 "DumpWriter detected a numerical error writing the angular"
584 >                 " momentum for object %d", index);      
585 >        painCave.isFatal = 1;
586 >        simError();
587 >      }
588  
589 <            MPI_Recv(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR,
590 <                     which_node, myPotato, MPI_COMM_WORLD,
591 <                     &istatus);
589 >      sprintf(tempBuffer, " %13e %13e %13e %13e %13e %13e %13e",
590 >              q[0], q[1], q[2], q[3],
591 >              ji[0], ji[1], ji[2]);
592 >      line += tempBuffer;
593 >    }
594  
595 <            myPotato++;
595 >    if (needForceVector_) {
596 >      type += "f";
597 >      Vector3d frc = sd->getFrc();
598 >      if (isinf(frc[0]) || isnan(frc[0]) ||
599 >          isinf(frc[1]) || isnan(frc[1]) ||
600 >          isinf(frc[2]) || isnan(frc[2]) ) {      
601 >        sprintf( painCave.errMsg,
602 >                 "DumpWriter detected a numerical error writing the force"
603 >                 " for object %d", index);      
604 >        painCave.isFatal = 1;
605 >        simError();
606 >      }
607 >      sprintf(tempBuffer, " %13e %13e %13e",
608 >              frc[0], frc[1], frc[2]);
609 >      line += tempBuffer;
610 >      
611 >      if (sd->isDirectional()) {
612 >        type += "t";
613 >        Vector3d trq = sd->getTrq();        
614 >        if (isinf(trq[0]) || isnan(trq[0]) ||
615 >            isinf(trq[1]) || isnan(trq[1]) ||
616 >            isinf(trq[2]) || isnan(trq[2]) ) {      
617 >          sprintf( painCave.errMsg,
618 >                   "DumpWriter detected a numerical error writing the torque"
619 >                   " for object %d", index);      
620 >          painCave.isFatal = 1;
621 >          simError();
622 >        }        
623 >        sprintf(tempBuffer, " %13e %13e %13e",
624 >                trq[0], trq[1], trq[2]);
625 >        line += tempBuffer;
626 >      }      
627 >    }
628  
629 <            MPI_Recv(atomData, 19, MPI_REALTYPE, which_node, myPotato,
630 <                     MPI_COMM_WORLD, &istatus);
631 <            myPotato++;
629 >    sprintf(tempBuffer, "%10d %7s %s\n", index, type.c_str(), line.c_str());
630 >    return std::string(tempBuffer);
631 >  }
632  
633 <            MPI_Get_count(&istatus, MPI_REALTYPE, &msgLen);
633 >  std::string DumpWriter::prepareSiteLine(StuntDouble* sd, int ioIndex, int siteIndex) {
634 >    int storageLayout = info_->getSnapshotManager()->getStorageLayout();
635  
636 <            if (msgLen == 13 || msgLen == 19)
637 <              isDirectional = 1;
638 <            else
639 <              isDirectional = 0;
636 >    std::string id;
637 >    std::string type;
638 >    std::string line;
639 >    char tempBuffer[4096];
640  
641 <            // If we've survived to here, format the line:
641 >    if (sd->isRigidBody()) {
642 >      sprintf(tempBuffer, "%10d           ", ioIndex);
643 >      id = std::string(tempBuffer);
644 >    } else {
645 >      sprintf(tempBuffer, "%10d %10d", ioIndex, siteIndex);
646 >      id = std::string(tempBuffer);
647 >    }
648 >              
649 >    if (needFlucQ_) {
650 >      if (storageLayout & DataStorage::dslFlucQPosition) {
651 >        type += "c";
652 >        RealType fqPos = sd->getFlucQPos();
653 >        if (isinf(fqPos) || isnan(fqPos) ) {      
654 >          sprintf( painCave.errMsg,
655 >                   "DumpWriter detected a numerical error writing the"
656 >                   " fluctuating charge for object %s", id.c_str());      
657 >          painCave.isFatal = 1;
658 >          simError();
659 >        }
660 >        sprintf(tempBuffer, " %13e ", fqPos);
661 >        line += tempBuffer;
662 >      }
663  
664 <            if (!isDirectional) {
665 <              sprintf(writeLine, "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
666 <                      MPIatomTypeString, atomData[0],
667 <                      atomData[1], atomData[2],
668 <                      atomData[3], atomData[4],
669 <                      atomData[5]);
664 >      if (storageLayout & DataStorage::dslFlucQVelocity) {
665 >        type += "w";    
666 >        RealType fqVel = sd->getFlucQVel();
667 >        if (isinf(fqVel) || isnan(fqVel) ) {      
668 >          sprintf( painCave.errMsg,
669 >                   "DumpWriter detected a numerical error writing the"
670 >                   " fluctuating charge velocity for object %s", id.c_str());      
671 >          painCave.isFatal = 1;
672 >          simError();
673 >        }
674 >        sprintf(tempBuffer, " %13e ", fqVel);
675 >        line += tempBuffer;
676 >      }
677  
678 <              strcat(writeLine,
679 <                     "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0");
680 <            } else {
681 <              sprintf(writeLine,
682 <                      "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
683 <                      MPIatomTypeString,
684 <                      atomData[0],
685 <                      atomData[1],
686 <                      atomData[2],
687 <                      atomData[3],
688 <                      atomData[4],
689 <                      atomData[5],
690 <                      atomData[6],
691 <                      atomData[7],
692 <                      atomData[8],
693 <                      atomData[9],
694 <                      atomData[10],
695 <                      atomData[11],
696 <                      atomData[12]);
697 <            }
698 <            
699 <            if (needForceVector_) {
700 <              if (!isDirectional) {
701 <                sprintf(writeLine, "\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
702 <                        atomData[6],
703 <                        atomData[7],
704 <                        atomData[8],
705 <                        atomData[9],
706 <                        atomData[10],
707 <                        atomData[11]);
708 <              } else {
709 <                sprintf(writeLine, "\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
710 <                        atomData[13],
711 <                        atomData[14],
712 <                        atomData[15],
480 <                        atomData[16],
481 <                        atomData[17],
482 <                        atomData[18]);
483 <              }
484 <            }
678 >      if (needForceVector_) {
679 >        if (storageLayout & DataStorage::dslFlucQForce) {          
680 >          type += "g";
681 >          RealType fqFrc = sd->getFlucQFrc();        
682 >          if (isinf(fqFrc) || isnan(fqFrc) ) {      
683 >            sprintf( painCave.errMsg,
684 >                     "DumpWriter detected a numerical error writing the"
685 >                     " fluctuating charge force for object %s", id.c_str());      
686 >            painCave.isFatal = 1;
687 >            simError();
688 >          }
689 >          sprintf(tempBuffer, " %13e ", fqFrc);        
690 >          line += tempBuffer;
691 >        }
692 >      }
693 >    }
694 >    
695 >    if (needElectricField_) {
696 >      if (storageLayout & DataStorage::dslElectricField) {
697 >        type += "e";
698 >        Vector3d eField= sd->getElectricField();
699 >        if (isinf(eField[0]) || isnan(eField[0]) ||
700 >            isinf(eField[1]) || isnan(eField[1]) ||
701 >            isinf(eField[2]) || isnan(eField[2]) ) {      
702 >          sprintf( painCave.errMsg,
703 >                   "DumpWriter detected a numerical error writing the electric"
704 >                   " field for object %s", id.c_str());      
705 >          painCave.isFatal = 1;
706 >          simError();
707 >        }
708 >        sprintf(tempBuffer, " %13e %13e %13e",
709 >                eField[0], eField[1], eField[2]);
710 >        line += tempBuffer;
711 >      }
712 >    }
713  
486            sprintf(writeLine, "\n");
487            os << writeLine;
714  
715 <          } // end for(int l =0)
716 <
717 <          potatoes[which_node] = myPotato;
718 <        } else { //master node has current molecule
719 <
720 <          mol = info_->getMoleculeByGlobalIndex(i);
721 <
722 <          if (mol == NULL) {
723 <            sprintf(painCave.errMsg, "Molecule not found on node %d!", worldRank);
724 <            painCave.isFatal = 1;
725 <            simError();
726 <          }
727 <                
502 <          for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
503 <               integrableObject = mol->nextIntegrableObject(ii)) {      
504 <
505 <            pos = integrableObject->getPos();
506 <            vel = integrableObject->getVel();
507 <
508 <            atomData[0] = pos[0];
509 <            atomData[1] = pos[1];
510 <            atomData[2] = pos[2];
511 <
512 <            atomData[3] = vel[0];
513 <            atomData[4] = vel[1];
514 <            atomData[5] = vel[2];
515 <
516 <            isDirectional = 0;
517 <
518 <            if (integrableObject->isDirectional()) {
519 <              isDirectional = 1;
520 <
521 <              q = integrableObject->getQ();
522 <              ji = integrableObject->getJ();
523 <
524 <              for(int j = 0; j < 6; j++) {
525 <                atomData[j] = atomData[j];
526 <              }
527 <
528 <              atomData[6] = q[0];
529 <              atomData[7] = q[1];
530 <              atomData[8] = q[2];
531 <              atomData[9] = q[3];
532 <
533 <              atomData[10] = ji[0];
534 <              atomData[11] = ji[1];
535 <              atomData[12] = ji[2];
536 <            }
537 <
538 <            if (needForceVector_) {
539 <              frc = integrableObject->getFrc();
540 <              trq = integrableObject->getTrq();
541 <
542 <              if (!isDirectional) {
543 <                atomData[6] = frc[0];
544 <                atomData[7] = frc[1];
545 <                atomData[8] = frc[2];
546 <                atomData[9] = trq[0];
547 <                atomData[10] = trq[1];
548 <                atomData[11] = trq[2];
549 <              } else {
550 <                atomData[13] = frc[0];
551 <                atomData[14] = frc[1];
552 <                atomData[15] = frc[2];
553 <                atomData[16] = trq[0];
554 <                atomData[17] = trq[1];
555 <                atomData[18] = trq[2];
556 <              }
557 <            }
558 <
559 <            // If we've survived to here, format the line:
560 <
561 <            if (!isDirectional) {
562 <              sprintf(writeLine, "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
563 <                      integrableObject->getType().c_str(), atomData[0],
564 <                      atomData[1], atomData[2],
565 <                      atomData[3], atomData[4],
566 <                      atomData[5]);
567 <
568 <              strcat(writeLine,
569 <                     "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0");
570 <            } else {
571 <              sprintf(writeLine,
572 <                      "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
573 <                      integrableObject->getType().c_str(),
574 <                      atomData[0],
575 <                      atomData[1],
576 <                      atomData[2],
577 <                      atomData[3],
578 <                      atomData[4],
579 <                      atomData[5],
580 <                      atomData[6],
581 <                      atomData[7],
582 <                      atomData[8],
583 <                      atomData[9],
584 <                      atomData[10],
585 <                      atomData[11],
586 <                      atomData[12]);
587 <            }
588 <
589 <            if (needForceVector_) {
590 <              if (!isDirectional) {
591 <              sprintf(writeLine, "\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
592 <                      atomData[6],
593 <                      atomData[7],
594 <                      atomData[8],
595 <                      atomData[9],
596 <                      atomData[10],
597 <                      atomData[11]);
598 <              } else {
599 <                sprintf(writeLine, "\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
600 <                        atomData[13],
601 <                        atomData[14],
602 <                        atomData[15],
603 <                        atomData[16],
604 <                        atomData[17],
605 <                        atomData[18]);
606 <              }
607 <            }
608 <
609 <            sprintf(writeLine, "\n");
610 <            os << writeLine;
611 <
612 <          } //end for(iter = integrableObject.begin())
613 <        }
614 <      } //end for(i = 0; i < mpiSim->getNmol())
615 <
616 <      os.flush();
617 <        
618 <      sprintf(checkPointMsg, "Sucessfully took a dump.\n");
619 <      MPIcheckPoint();
620 <
621 <      delete [] potatoes;
622 <    } else {
623 <
624 <      // worldRank != 0, so I'm a remote node.  
625 <
626 <      // Set my magic potato to 0:
627 <
628 <      myPotato = 0;
629 <
630 <      for(int i = 0; i < info_->getNGlobalMolecules(); i++) {
631 <
632 <        // Am I the node which has this integrableObject?
633 <        int whichNode = info_->getMolToProc(i);
634 <        if (whichNode == worldRank) {
635 <          if (myPotato + 1 >= MAXTAG) {
636 <
637 <            // The potato was going to exceed the maximum value,
638 <            // so wrap this processor potato back to 0 (and block until
639 <            // node 0 says we can go:
640 <
641 <            MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,
642 <                     &istatus);
643 <          }
644 <
645 <          mol = info_->getMoleculeByGlobalIndex(i);
646 <
647 <                
648 <          nCurObj = mol->getNIntegrableObjects();
649 <
650 <          MPI_Send(&nCurObj, 1, MPI_INT, 0, myPotato, MPI_COMM_WORLD);
651 <          myPotato++;
652 <
653 <          for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
654 <               integrableObject = mol->nextIntegrableObject(ii)) {
655 <
656 <            if (myPotato + 2 >= MAXTAG) {
657 <
658 <              // The potato was going to exceed the maximum value,
659 <              // so wrap this processor potato back to 0 (and block until
660 <              // node 0 says we can go:
661 <
662 <              MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,
663 <                       &istatus);
664 <            }
665 <
666 <            pos = integrableObject->getPos();
667 <            vel = integrableObject->getVel();
668 <
669 <            atomData[0] = pos[0];
670 <            atomData[1] = pos[1];
671 <            atomData[2] = pos[2];
672 <
673 <            atomData[3] = vel[0];
674 <            atomData[4] = vel[1];
675 <            atomData[5] = vel[2];
676 <
677 <            isDirectional = 0;
678 <
679 <            if (integrableObject->isDirectional()) {
680 <              isDirectional = 1;
681 <
682 <              q = integrableObject->getQ();
683 <              ji = integrableObject->getJ();
684 <
685 <              atomData[6] = q[0];
686 <              atomData[7] = q[1];
687 <              atomData[8] = q[2];
688 <              atomData[9] = q[3];
689 <
690 <              atomData[10] = ji[0];
691 <              atomData[11] = ji[1];
692 <              atomData[12] = ji[2];
693 <            }
694 <
695 <            if (needForceVector_) {
696 <              frc = integrableObject->getFrc();
697 <              trq = integrableObject->getTrq();
698 <              
699 <              if (!isDirectional) {
700 <                atomData[6] = frc[0];
701 <                atomData[7] = frc[1];
702 <                atomData[8] = frc[2];
703 <                
704 <                atomData[9] = trq[0];
705 <                atomData[10] = trq[1];
706 <                atomData[11] = trq[2];
707 <              } else {
708 <                atomData[13] = frc[0];
709 <                atomData[14] = frc[1];
710 <                atomData[15] = frc[2];
711 <                
712 <                atomData[16] = trq[0];
713 <                atomData[17] = trq[1];
714 <                atomData[18] = trq[2];
715 <              }
716 <            }
717 <
718 <            strncpy(MPIatomTypeString, integrableObject->getType().c_str(), MINIBUFFERSIZE);
719 <
720 <            // null terminate the  std::string before sending (just in case):
721 <            MPIatomTypeString[MINIBUFFERSIZE - 1] = '\0';
722 <
723 <            MPI_Send(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR, 0,
724 <                     myPotato, MPI_COMM_WORLD);
725 <
726 <            myPotato++;
727 <
728 <            if (isDirectional && needForceVector_) {
729 <              MPI_Send(atomData, 19, MPI_REALTYPE, 0, myPotato,
730 <                       MPI_COMM_WORLD);
731 <            } else if (isDirectional) {
732 <              MPI_Send(atomData, 13, MPI_REALTYPE, 0, myPotato,
733 <                       MPI_COMM_WORLD);
734 <            } else if (needForceVector_) {
735 <              MPI_Send(atomData, 12, MPI_REALTYPE, 0, myPotato,
736 <                       MPI_COMM_WORLD);
737 <            } else {
738 <              MPI_Send(atomData, 6, MPI_REALTYPE, 0, myPotato,
739 <                       MPI_COMM_WORLD);
740 <            }
741 <
742 <            myPotato++;
743 <          }
744 <                    
745 <        }
746 <            
715 >    if (needParticlePot_) {
716 >      if (storageLayout & DataStorage::dslParticlePot) {
717 >        type += "u";
718 >        RealType particlePot = sd->getParticlePot();
719 >        if (isinf(particlePot) || isnan(particlePot)) {      
720 >          sprintf( painCave.errMsg,
721 >                   "DumpWriter detected a numerical error writing the particle "
722 >                   " potential for object %s", id.c_str());      
723 >          painCave.isFatal = 1;
724 >          simError();
725 >        }
726 >        sprintf(tempBuffer, " %13e", particlePot);
727 >        line += tempBuffer;
728        }
748      sprintf(checkPointMsg, "Sucessfully took a dump.\n");
749      MPIcheckPoint();
729      }
730 <
731 < #endif // is_mpi
732 <
730 >  
731 >    sprintf(tempBuffer, "%s %7s %s\n", id.c_str(), type.c_str(), line.c_str());
732 >    return std::string(tempBuffer);
733    }
734  
735    void DumpWriter::writeDump() {
# Line 763 | Line 742 | namespace oopse {
742   #ifdef IS_MPI
743      if (worldRank == 0) {
744   #endif // is_mpi
745 <
745 >      
746        eorStream = createOStream(eorFilename_);
747  
748   #ifdef IS_MPI
749      }
750 < #endif // is_mpi    
751 <
750 > #endif
751 >    
752      writeFrame(*eorStream);
753 <
753 >      
754   #ifdef IS_MPI
755      if (worldRank == 0) {
756 < #endif // is_mpi
757 <    delete eorStream;
758 <
756 > #endif
757 >      
758 >      writeClosing(*eorStream);
759 >      delete eorStream;
760 >      
761   #ifdef IS_MPI
762      }
763   #endif // is_mpi  
# Line 790 | Line 771 | namespace oopse {
771   #ifdef IS_MPI
772      if (worldRank == 0) {
773   #endif // is_mpi
793
774        buffers.push_back(dumpFile_->rdbuf());
795
775        eorStream = createOStream(eorFilename_);
797
776        buffers.push_back(eorStream->rdbuf());
799        
777   #ifdef IS_MPI
778      }
779   #endif // is_mpi    
780  
781      TeeBuf tbuf(buffers.begin(), buffers.end());
782      std::ostream os(&tbuf);
806
783      writeFrame(os);
784  
785   #ifdef IS_MPI
786      if (worldRank == 0) {
787   #endif // is_mpi
788 <    delete eorStream;
789 <
788 >      writeClosing(*eorStream);
789 >      delete eorStream;
790   #ifdef IS_MPI
791      }
792 < #endif // is_mpi  
817 <    
792 > #endif // is_mpi      
793    }
794  
795 < std::ostream* DumpWriter::createOStream(const std::string& filename) {
795 >  std::ostream* DumpWriter::createOStream(const std::string& filename) {
796  
797      std::ostream* newOStream;
798 < #ifdef HAVE_LIBZ
798 > #ifdef HAVE_ZLIB
799      if (needCompression_) {
800 <        newOStream = new ogzstream(filename.c_str());
800 >      newOStream = new ogzstream(filename.c_str());
801      } else {
802 <        newOStream = new std::ofstream(filename.c_str());
802 >      newOStream = new std::ofstream(filename.c_str());
803      }
804   #else
805      newOStream = new std::ofstream(filename.c_str());
806   #endif
807 +    //write out MetaData first
808 +    (*newOStream) << "<OpenMD version=2>" << std::endl;
809 +    (*newOStream) << "  <MetaData>" << std::endl;
810 +    (*newOStream) << info_->getRawMetaData();
811 +    (*newOStream) << "  </MetaData>" << std::endl;
812      return newOStream;
813 < }
813 >  }
814  
815 < }//end namespace oopse
815 >  void DumpWriter::writeClosing(std::ostream& os) {
816 >
817 >    os << "</OpenMD>\n";
818 >    os.flush();
819 >  }
820 >
821 > }//end namespace OpenMD

Comparing trunk/src/io/DumpWriter.cpp (property svn:keywords):
Revision 963 by tim, Wed May 17 21:51:42 2006 UTC vs.
Revision 1971 by gezelter, Fri Feb 28 13:25:13 2014 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines