| 1 | < | /* | 
| 1 | > | /* | 
| 2 |  | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 |  | * | 
| 4 |  | * The University of Notre Dame grants you ("Licensee") a | 
| 38 |  | * University of Notre Dame has been advised of the possibility of | 
| 39 |  | * such damages. | 
| 40 |  | */ | 
| 41 | < |  | 
| 41 | > |  | 
| 42 |  | #include "integrators/Velocitizer.hpp" | 
| 43 |  | #include "math/SquareMatrix3.hpp" | 
| 44 |  | #include "primitives/Molecule.hpp" | 
| 51 |  | #endif | 
| 52 |  |  | 
| 53 |  | namespace oopse { | 
| 54 | < |  | 
| 55 | < | Velocitizer::Velocitizer(SimInfo* info) : info_(info) { | 
| 56 | < |  | 
| 54 | > |  | 
| 55 | > | Velocitizer::Velocitizer(SimInfo* info) : info_(info) { | 
| 56 | > |  | 
| 57 |  | int seedValue; | 
| 58 |  | Globals * simParams = info->getSimParams(); | 
| 59 | < |  | 
| 59 | > |  | 
| 60 |  | #ifndef IS_MPI | 
| 61 |  | if (simParams->haveSeed()) { | 
| 62 | < | seedValue = simParams->getSeed(); | 
| 63 | < | randNumGen_ = new SeqRandNumGen(seedValue); | 
| 62 | > | seedValue = simParams->getSeed(); | 
| 63 | > | randNumGen_ = new SeqRandNumGen(seedValue); | 
| 64 |  | }else { | 
| 65 | < | randNumGen_ = new SeqRandNumGen(); | 
| 65 | > | randNumGen_ = new SeqRandNumGen(); | 
| 66 |  | } | 
| 67 |  | #else | 
| 68 |  | if (simParams->haveSeed()) { | 
| 69 | < | seedValue = simParams->getSeed(); | 
| 70 | < | randNumGen_ = new ParallelRandNumGen(seedValue); | 
| 69 | > | seedValue = simParams->getSeed(); | 
| 70 | > | randNumGen_ = new ParallelRandNumGen(seedValue); | 
| 71 |  | }else { | 
| 72 | < | randNumGen_ = new ParallelRandNumGen(); | 
| 72 | > | randNumGen_ = new ParallelRandNumGen(); | 
| 73 |  | } | 
| 74 |  | #endif | 
| 75 | < | } | 
| 76 | < |  | 
| 77 | < | Velocitizer::~Velocitizer() { | 
| 75 | > | } | 
| 76 | > |  | 
| 77 | > | Velocitizer::~Velocitizer() { | 
| 78 |  | delete randNumGen_; | 
| 79 | < | } | 
| 80 | < |  | 
| 81 | < | void Velocitizer::velocitize(double temperature) { | 
| 79 | > | } | 
| 80 | > |  | 
| 81 | > | void Velocitizer::velocitize(double temperature) { | 
| 82 |  | Vector3d aVel; | 
| 83 |  | Vector3d aJ; | 
| 84 |  | Mat3x3d I; | 
| 91 |  | const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. | 
| 92 |  | double av2; | 
| 93 |  | double kebar; | 
| 94 | < |  | 
| 94 | > |  | 
| 95 |  | SimInfo::MoleculeIterator i; | 
| 96 |  | Molecule::IntegrableObjectIterator j; | 
| 97 |  | Molecule * mol; | 
| 98 |  | StuntDouble * integrableObject; | 
| 99 | < |  | 
| 100 | < |  | 
| 101 | < |  | 
| 99 | > |  | 
| 100 | > |  | 
| 101 | > |  | 
| 102 |  | kebar = kb * temperature * info_->getNdfRaw() / (2.0 * info_->getNdf()); | 
| 103 | < |  | 
| 103 | > |  | 
| 104 |  | for( mol = info_->beginMolecule(i); mol != NULL; | 
| 105 | < | mol = info_->nextMolecule(i) ) { | 
| 106 | < | for( integrableObject = mol->beginIntegrableObject(j); | 
| 107 | < | integrableObject != NULL; | 
| 108 | < | integrableObject = mol->nextIntegrableObject(j) ) { | 
| 109 | < |  | 
| 110 | < | // uses equipartition theory to solve for vbar in angstrom/fs | 
| 111 | < |  | 
| 112 | < | av2 = 2.0 * kebar / integrableObject->getMass(); | 
| 113 | < | vbar = sqrt(av2); | 
| 114 | < |  | 
| 115 | < | // picks random velocities from a gaussian distribution | 
| 116 | < | // centered on vbar | 
| 117 | < |  | 
| 118 | < | for( int k = 0; k < 3; k++ ) { | 
| 119 | < | aVel[k] = vbar * randNumGen_->randNorm(0.0, 1.0); | 
| 120 | < | } | 
| 121 | < |  | 
| 122 | < | integrableObject->setVel(aVel); | 
| 123 | < |  | 
| 124 | < | if (integrableObject->isDirectional()) { | 
| 125 | < | I = integrableObject->getI(); | 
| 126 | < |  | 
| 127 | < | if (integrableObject->isLinear()) { | 
| 128 | < | l = integrableObject->linearAxis(); | 
| 129 | < | m = (l + 1) % 3; | 
| 130 | < | n = (l + 2) % 3; | 
| 131 | < |  | 
| 132 | < | aJ[l] = 0.0; | 
| 133 | < | vbar = sqrt(2.0 * kebar * I(m, m)); | 
| 134 | < | aJ[m] = vbar * randNumGen_->randNorm(0.0, 1.0); | 
| 135 | < | vbar = sqrt(2.0 * kebar * I(n, n)); | 
| 136 | < | aJ[n] = vbar * randNumGen_->randNorm(0.0, 1.0); | 
| 137 | < | } else { | 
| 138 | < | for( int k = 0; k < 3; k++ ) { | 
| 139 | < | vbar = sqrt(2.0 * kebar * I(k, k)); | 
| 140 | < | aJ[k] = vbar *randNumGen_->randNorm(0.0, 1.0); | 
| 141 | < | } | 
| 142 | < | } // else isLinear | 
| 143 | < |  | 
| 144 | < | integrableObject->setJ(aJ); | 
| 145 | < | }     //isDirectional | 
| 146 | < | } | 
| 105 | > | mol = info_->nextMolecule(i) ) { | 
| 106 | > | for( integrableObject = mol->beginIntegrableObject(j); | 
| 107 | > | integrableObject != NULL; | 
| 108 | > | integrableObject = mol->nextIntegrableObject(j) ) { | 
| 109 | > |  | 
| 110 | > | // uses equipartition theory to solve for vbar in angstrom/fs | 
| 111 | > |  | 
| 112 | > | av2 = 2.0 * kebar / integrableObject->getMass(); | 
| 113 | > | vbar = sqrt(av2); | 
| 114 | > |  | 
| 115 | > | // picks random velocities from a gaussian distribution | 
| 116 | > | // centered on vbar | 
| 117 | > |  | 
| 118 | > | for( int k = 0; k < 3; k++ ) { | 
| 119 | > | aVel[k] = vbar * randNumGen_->randNorm(0.0, 1.0); | 
| 120 | > | } | 
| 121 | > |  | 
| 122 | > | integrableObject->setVel(aVel); | 
| 123 | > |  | 
| 124 | > | if (integrableObject->isDirectional()) { | 
| 125 | > | I = integrableObject->getI(); | 
| 126 | > |  | 
| 127 | > | if (integrableObject->isLinear()) { | 
| 128 | > | l = integrableObject->linearAxis(); | 
| 129 | > | m = (l + 1) % 3; | 
| 130 | > | n = (l + 2) % 3; | 
| 131 | > |  | 
| 132 | > | aJ[l] = 0.0; | 
| 133 | > | vbar = sqrt(2.0 * kebar * I(m, m)); | 
| 134 | > | aJ[m] = vbar * randNumGen_->randNorm(0.0, 1.0); | 
| 135 | > | vbar = sqrt(2.0 * kebar * I(n, n)); | 
| 136 | > | aJ[n] = vbar * randNumGen_->randNorm(0.0, 1.0); | 
| 137 | > | } else { | 
| 138 | > | for( int k = 0; k < 3; k++ ) { | 
| 139 | > | vbar = sqrt(2.0 * kebar * I(k, k)); | 
| 140 | > | aJ[k] = vbar *randNumGen_->randNorm(0.0, 1.0); | 
| 141 | > | } | 
| 142 | > | } // else isLinear | 
| 143 | > |  | 
| 144 | > | integrableObject->setJ(aJ); | 
| 145 | > | }     //isDirectional | 
| 146 | > | } | 
| 147 |  | }             //end for (mol = beginMolecule(i); ...) | 
| 148 | < |  | 
| 149 | < |  | 
| 150 | < |  | 
| 148 | > |  | 
| 149 | > |  | 
| 150 | > |  | 
| 151 |  | removeComDrift(); | 
| 152 | < |  | 
| 153 | < | } | 
| 154 | < |  | 
| 155 | < |  | 
| 156 | < |  | 
| 157 | < | void Velocitizer::removeComDrift() { | 
| 152 | > |  | 
| 153 | > | } | 
| 154 | > |  | 
| 155 | > |  | 
| 156 | > |  | 
| 157 | > | void Velocitizer::removeComDrift() { | 
| 158 |  | // Get the Center of Mass drift velocity. | 
| 159 |  | Vector3d vdrift = info_->getComVel(); | 
| 160 |  |  | 
| 166 |  | //  Corrects for the center of mass drift. | 
| 167 |  | // sums all the momentum and divides by total mass. | 
| 168 |  | for( mol = info_->beginMolecule(i); mol != NULL; | 
| 169 | < | mol = info_->nextMolecule(i) ) { | 
| 170 | < | for( integrableObject = mol->beginIntegrableObject(j); | 
| 171 | < | integrableObject != NULL; | 
| 172 | < | integrableObject = mol->nextIntegrableObject(j) ) { | 
| 173 | < | integrableObject->setVel(integrableObject->getVel() - vdrift); | 
| 174 | < | } | 
| 169 | > | mol = info_->nextMolecule(i) ) { | 
| 170 | > | for( integrableObject = mol->beginIntegrableObject(j); | 
| 171 | > | integrableObject != NULL; | 
| 172 | > | integrableObject = mol->nextIntegrableObject(j) ) { | 
| 173 | > | integrableObject->setVel(integrableObject->getVel() - vdrift); | 
| 174 | > | } | 
| 175 |  | } | 
| 176 | < |  | 
| 176 | > |  | 
| 177 | > | } | 
| 178 | > |  | 
| 179 |  | } | 
| 178 | – |  | 
| 179 | – | } |