1 |
< |
/* |
1 |
> |
/* |
2 |
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
* |
4 |
|
* The University of Notre Dame grants you ("Licensee") a |
6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
< |
|
42 |
> |
|
43 |
|
#include "integrators/Velocitizer.hpp" |
44 |
|
#include "math/SquareMatrix3.hpp" |
45 |
|
#include "primitives/Molecule.hpp" |
46 |
|
#include "primitives/StuntDouble.hpp" |
46 |
– |
#include "math/randomSPRNG.hpp" |
47 |
|
|
48 |
< |
namespace oopse { |
48 |
> |
#ifndef IS_MPI |
49 |
> |
#include "math/SeqRandNumGen.hpp" |
50 |
> |
#else |
51 |
> |
#include "math/ParallelRandNumGen.hpp" |
52 |
> |
#endif |
53 |
|
|
54 |
< |
void Velocitizer::velocitize(double temperature) { |
54 |
> |
namespace OpenMD { |
55 |
> |
|
56 |
> |
Velocitizer::Velocitizer(SimInfo* info) : info_(info), thermo(info) { |
57 |
> |
|
58 |
> |
int seedValue; |
59 |
> |
Globals * simParams = info->getSimParams(); |
60 |
> |
|
61 |
> |
#ifndef IS_MPI |
62 |
> |
if (simParams->haveSeed()) { |
63 |
> |
seedValue = simParams->getSeed(); |
64 |
> |
randNumGen_ = new SeqRandNumGen(seedValue); |
65 |
> |
}else { |
66 |
> |
randNumGen_ = new SeqRandNumGen(); |
67 |
> |
} |
68 |
> |
#else |
69 |
> |
if (simParams->haveSeed()) { |
70 |
> |
seedValue = simParams->getSeed(); |
71 |
> |
randNumGen_ = new ParallelRandNumGen(seedValue); |
72 |
> |
}else { |
73 |
> |
randNumGen_ = new ParallelRandNumGen(); |
74 |
> |
} |
75 |
> |
#endif |
76 |
> |
} |
77 |
> |
|
78 |
> |
Velocitizer::~Velocitizer() { |
79 |
> |
delete randNumGen_; |
80 |
> |
} |
81 |
> |
|
82 |
> |
void Velocitizer::velocitize(RealType temperature) { |
83 |
|
Vector3d aVel; |
84 |
|
Vector3d aJ; |
85 |
|
Mat3x3d I; |
86 |
< |
int l; |
55 |
< |
int m; |
56 |
< |
int n; |
86 |
> |
int l, m, n; |
87 |
|
Vector3d vdrift; |
88 |
< |
double vbar; |
89 |
< |
/**@todo refactory kb */ |
90 |
< |
const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. |
91 |
< |
double av2; |
92 |
< |
double kebar; |
93 |
< |
|
88 |
> |
RealType vbar; |
89 |
> |
/**@todo refactor kb */ |
90 |
> |
const RealType kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. |
91 |
> |
RealType av2; |
92 |
> |
RealType kebar; |
93 |
> |
|
94 |
> |
Globals * simParams = info_->getSimParams(); |
95 |
> |
|
96 |
|
SimInfo::MoleculeIterator i; |
97 |
|
Molecule::IntegrableObjectIterator j; |
98 |
|
Molecule * mol; |
99 |
< |
StuntDouble * integrableObject; |
68 |
< |
gaussianSPRNG gaussStream(info_->getSeed()); |
99 |
> |
StuntDouble * sd; |
100 |
|
|
101 |
|
kebar = kb * temperature * info_->getNdfRaw() / (2.0 * info_->getNdf()); |
102 |
|
|
103 |
|
for( mol = info_->beginMolecule(i); mol != NULL; |
104 |
< |
mol = info_->nextMolecule(i) ) { |
74 |
< |
for( integrableObject = mol->beginIntegrableObject(j); |
75 |
< |
integrableObject != NULL; |
76 |
< |
integrableObject = mol->nextIntegrableObject(j) ) { |
104 |
> |
mol = info_->nextMolecule(i) ) { |
105 |
|
|
106 |
< |
// uses equipartition theory to solve for vbar in angstrom/fs |
107 |
< |
|
108 |
< |
av2 = 2.0 * kebar / integrableObject->getMass(); |
109 |
< |
vbar = sqrt(av2); |
110 |
< |
|
111 |
< |
// picks random velocities from a gaussian distribution |
112 |
< |
// centered on vbar |
113 |
< |
|
114 |
< |
for( int k = 0; k < 3; k++ ) { |
115 |
< |
aVel[k] = vbar * gaussStream.getGaussian(); |
116 |
< |
} |
117 |
< |
|
118 |
< |
integrableObject->setVel(aVel); |
119 |
< |
|
120 |
< |
if (integrableObject->isDirectional()) { |
121 |
< |
I = integrableObject->getI(); |
122 |
< |
|
123 |
< |
if (integrableObject->isLinear()) { |
124 |
< |
l = integrableObject->linearAxis(); |
125 |
< |
m = (l + 1) % 3; |
126 |
< |
n = (l + 2) % 3; |
127 |
< |
|
128 |
< |
aJ[l] = 0.0; |
129 |
< |
vbar = sqrt(2.0 * kebar * I(m, m)); |
130 |
< |
aJ[m] = vbar * gaussStream.getGaussian(); |
131 |
< |
vbar = sqrt(2.0 * kebar * I(n, n)); |
132 |
< |
aJ[n] = vbar * gaussStream.getGaussian(); |
133 |
< |
} else { |
134 |
< |
for( int k = 0; k < 3; k++ ) { |
135 |
< |
vbar = sqrt(2.0 * kebar * I(k, k)); |
136 |
< |
aJ[k] = vbar * gaussStream.getGaussian(); |
137 |
< |
} |
138 |
< |
} // else isLinear |
139 |
< |
|
140 |
< |
integrableObject->setJ(aJ); |
141 |
< |
} //isDirectional |
142 |
< |
} |
143 |
< |
} //end for (mol = beginMolecule(i); ...) |
144 |
< |
|
145 |
< |
|
146 |
< |
|
106 |
> |
for( sd = mol->beginIntegrableObject(j); sd != NULL; |
107 |
> |
sd = mol->nextIntegrableObject(j) ) { |
108 |
> |
|
109 |
> |
// uses equipartition theory to solve for vbar in angstrom/fs |
110 |
> |
|
111 |
> |
av2 = 2.0 * kebar / sd->getMass(); |
112 |
> |
vbar = sqrt(av2); |
113 |
> |
|
114 |
> |
// picks random velocities from a gaussian distribution |
115 |
> |
// centered on vbar |
116 |
> |
|
117 |
> |
for( int k = 0; k < 3; k++ ) { |
118 |
> |
aVel[k] = vbar * randNumGen_->randNorm(0.0, 1.0); |
119 |
> |
} |
120 |
> |
sd->setVel(aVel); |
121 |
> |
|
122 |
> |
if (sd->isDirectional()) { |
123 |
> |
I = sd->getI(); |
124 |
> |
|
125 |
> |
if (sd->isLinear()) { |
126 |
> |
l = sd->linearAxis(); |
127 |
> |
m = (l + 1) % 3; |
128 |
> |
n = (l + 2) % 3; |
129 |
> |
|
130 |
> |
aJ[l] = 0.0; |
131 |
> |
vbar = sqrt(2.0 * kebar * I(m, m)); |
132 |
> |
aJ[m] = vbar * randNumGen_->randNorm(0.0, 1.0); |
133 |
> |
vbar = sqrt(2.0 * kebar * I(n, n)); |
134 |
> |
aJ[n] = vbar * randNumGen_->randNorm(0.0, 1.0); |
135 |
> |
} else { |
136 |
> |
for( int k = 0; k < 3; k++ ) { |
137 |
> |
vbar = sqrt(2.0 * kebar * I(k, k)); |
138 |
> |
aJ[k] = vbar *randNumGen_->randNorm(0.0, 1.0); |
139 |
> |
} |
140 |
> |
} |
141 |
> |
|
142 |
> |
sd->setJ(aJ); |
143 |
> |
} |
144 |
> |
} |
145 |
> |
} |
146 |
> |
|
147 |
|
removeComDrift(); |
148 |
|
|
149 |
< |
} |
149 |
> |
// Remove angular drift if we are not using periodic boundary |
150 |
> |
// conditions: |
151 |
|
|
152 |
< |
|
153 |
< |
|
154 |
< |
void Velocitizer::removeComDrift() { |
152 |
> |
if(!simParams->getUsePeriodicBoundaryConditions()) removeAngularDrift(); |
153 |
> |
} |
154 |
> |
|
155 |
> |
void Velocitizer::removeComDrift() { |
156 |
|
// Get the Center of Mass drift velocity. |
157 |
< |
Vector3d vdrift = info_->getComVel(); |
157 |
> |
Vector3d vdrift = thermo.getComVel(); |
158 |
|
|
159 |
|
SimInfo::MoleculeIterator i; |
160 |
|
Molecule::IntegrableObjectIterator j; |
161 |
|
Molecule * mol; |
162 |
< |
StuntDouble * integrableObject; |
162 |
> |
StuntDouble * sd; |
163 |
|
|
164 |
|
// Corrects for the center of mass drift. |
165 |
|
// sums all the momentum and divides by total mass. |
166 |
|
for( mol = info_->beginMolecule(i); mol != NULL; |
167 |
< |
mol = info_->nextMolecule(i) ) { |
138 |
< |
for( integrableObject = mol->beginIntegrableObject(j); |
139 |
< |
integrableObject != NULL; |
140 |
< |
integrableObject = mol->nextIntegrableObject(j) ) { |
141 |
< |
integrableObject->setVel(integrableObject->getVel() - vdrift); |
142 |
< |
} |
143 |
< |
} |
167 |
> |
mol = info_->nextMolecule(i) ) { |
168 |
|
|
169 |
< |
} |
169 |
> |
for( sd = mol->beginIntegrableObject(j); sd != NULL; |
170 |
> |
sd = mol->nextIntegrableObject(j) ) { |
171 |
|
|
172 |
+ |
sd->setVel(sd->getVel() - vdrift); |
173 |
+ |
|
174 |
+ |
} |
175 |
+ |
} |
176 |
+ |
} |
177 |
+ |
|
178 |
+ |
void Velocitizer::removeAngularDrift() { |
179 |
+ |
// Get the Center of Mass drift velocity. |
180 |
+ |
|
181 |
+ |
Vector3d vdrift; |
182 |
+ |
Vector3d com; |
183 |
+ |
|
184 |
+ |
thermo.getComAll(com, vdrift); |
185 |
+ |
|
186 |
+ |
Mat3x3d inertiaTensor; |
187 |
+ |
Vector3d angularMomentum; |
188 |
+ |
Vector3d omega; |
189 |
+ |
|
190 |
+ |
thermo.getInertiaTensor(inertiaTensor, angularMomentum); |
191 |
+ |
|
192 |
+ |
// We now need the inverse of the inertia tensor. |
193 |
+ |
inertiaTensor = inertiaTensor.inverse(); |
194 |
+ |
omega = inertiaTensor * angularMomentum; |
195 |
+ |
|
196 |
+ |
SimInfo::MoleculeIterator i; |
197 |
+ |
Molecule::IntegrableObjectIterator j; |
198 |
+ |
Molecule* mol; |
199 |
+ |
StuntDouble* sd; |
200 |
+ |
Vector3d tempComPos; |
201 |
+ |
|
202 |
+ |
// Corrects for the center of mass angular drift by summing all |
203 |
+ |
// the angular momentum and dividing by the total mass. |
204 |
+ |
|
205 |
+ |
for( mol = info_->beginMolecule(i); mol != NULL; |
206 |
+ |
mol = info_->nextMolecule(i) ) { |
207 |
+ |
|
208 |
+ |
for( sd = mol->beginIntegrableObject(j); sd != NULL; |
209 |
+ |
sd = mol->nextIntegrableObject(j) ) { |
210 |
+ |
|
211 |
+ |
tempComPos = sd->getPos() - com; |
212 |
+ |
sd->setVel((sd->getVel() - vdrift) - cross(omega, tempComPos)); |
213 |
+ |
|
214 |
+ |
} |
215 |
+ |
} |
216 |
+ |
} |
217 |
|
} |