ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/integrators/Velocitizer.cpp
(Generate patch)

Comparing trunk/src/integrators/Velocitizer.cpp (file contents):
Revision 963 by tim, Wed May 17 21:51:42 2006 UTC vs.
Revision 1079 by gezelter, Thu Oct 19 15:57:07 2006 UTC

# Line 1 | Line 1
1 < /*
2 < * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 < *
4 < * The University of Notre Dame grants you ("Licensee") a
5 < * non-exclusive, royalty free, license to use, modify and
6 < * redistribute this software in source and binary code form, provided
7 < * that the following conditions are met:
8 < *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
19 < *    notice, this list of conditions and the following disclaimer.
20 < *
21 < * 3. Redistributions in binary form must reproduce the above copyright
22 < *    notice, this list of conditions and the following disclaimer in the
23 < *    documentation and/or other materials provided with the
24 < *    distribution.
25 < *
26 < * This software is provided "AS IS," without a warranty of any
27 < * kind. All express or implied conditions, representations and
28 < * warranties, including any implied warranty of merchantability,
29 < * fitness for a particular purpose or non-infringement, are hereby
30 < * excluded.  The University of Notre Dame and its licensors shall not
31 < * be liable for any damages suffered by licensee as a result of
32 < * using, modifying or distributing the software or its
33 < * derivatives. In no event will the University of Notre Dame or its
34 < * licensors be liable for any lost revenue, profit or data, or for
35 < * direct, indirect, special, consequential, incidental or punitive
36 < * damages, however caused and regardless of the theory of liability,
37 < * arising out of the use of or inability to use software, even if the
38 < * University of Notre Dame has been advised of the possibility of
39 < * such damages.
40 < */
41 <
42 < #include "integrators/Velocitizer.hpp"
43 < #include "math/SquareMatrix3.hpp"
44 < #include "primitives/Molecule.hpp"
45 < #include "primitives/StuntDouble.hpp"
46 <
47 < #ifndef IS_MPI
48 < #include "math/SeqRandNumGen.hpp"
49 < #else
50 < #include "math/ParallelRandNumGen.hpp"
51 < #endif
52 <
53 < /* Remove me after testing*/
54 < #include <cstdio>
55 < #include <iostream>
56 < /*End remove me*/
57 <
58 < namespace oopse {
59 <  
60 <  Velocitizer::Velocitizer(SimInfo* info) : info_(info) {
61 <    
62 <    int seedValue;
63 <    Globals * simParams = info->getSimParams();
64 <    
65 < #ifndef IS_MPI
66 <    if (simParams->haveSeed()) {
67 <      seedValue = simParams->getSeed();
68 <      randNumGen_ = new SeqRandNumGen(seedValue);
69 <    }else {
70 <      randNumGen_ = new SeqRandNumGen();
71 <    }    
72 < #else
73 <    if (simParams->haveSeed()) {
74 <      seedValue = simParams->getSeed();
75 <      randNumGen_ = new ParallelRandNumGen(seedValue);
76 <    }else {
77 <      randNumGen_ = new ParallelRandNumGen();
78 <    }    
79 < #endif
80 <  }
81 <  
82 <  Velocitizer::~Velocitizer() {
83 <    delete randNumGen_;
84 <  }
85 <  
86 <  void Velocitizer::velocitize(RealType temperature) {
87 <    Vector3d aVel;
88 <    Vector3d aJ;
89 <    Mat3x3d I;
90 <    int l;
91 <    int m;
92 <    int n;
93 <    Vector3d vdrift;
94 <    RealType vbar;
95 <    /**@todo refactory kb */
96 <    const RealType kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
97 <    RealType av2;
98 <    RealType kebar;
99 <    
100 <    Globals * simParams = info_->getSimParams();
101 <    
102 <    SimInfo::MoleculeIterator i;
103 <    Molecule::IntegrableObjectIterator j;
104 <    Molecule * mol;
105 <    StuntDouble * integrableObject;
106 <    
107 <    
108 <    
109 <    kebar = kb * temperature * info_->getNdfRaw() / (2.0 * info_->getNdf());
110 <    
111 <    for( mol = info_->beginMolecule(i); mol != NULL;
112 <         mol = info_->nextMolecule(i) ) {
113 <      for( integrableObject = mol->beginIntegrableObject(j);
114 <           integrableObject != NULL;
115 <           integrableObject = mol->nextIntegrableObject(j) ) {
116 <        
117 <        // uses equipartition theory to solve for vbar in angstrom/fs
118 <        
119 <        av2 = 2.0 * kebar / integrableObject->getMass();
120 <        vbar = sqrt(av2);
121 <        
122 <        // picks random velocities from a gaussian distribution
123 <        // centered on vbar
124 <        
125 <        for( int k = 0; k < 3; k++ ) {
126 <          aVel[k] = vbar * randNumGen_->randNorm(0.0, 1.0);
127 <        }
128 <        
129 <        integrableObject->setVel(aVel);
130 <        
131 <        if (integrableObject->isDirectional()) {
132 <          I = integrableObject->getI();
133 <          
134 <          if (integrableObject->isLinear()) {
135 <            l = integrableObject->linearAxis();
136 <            m = (l + 1) % 3;
137 <            n = (l + 2) % 3;
138 <            
139 <            aJ[l] = 0.0;
140 <            vbar = sqrt(2.0 * kebar * I(m, m));
141 <            aJ[m] = vbar * randNumGen_->randNorm(0.0, 1.0);
142 <            vbar = sqrt(2.0 * kebar * I(n, n));
143 <            aJ[n] = vbar * randNumGen_->randNorm(0.0, 1.0);
144 <          } else {
145 <            for( int k = 0; k < 3; k++ ) {
146 <              vbar = sqrt(2.0 * kebar * I(k, k));
147 <              aJ[k] = vbar *randNumGen_->randNorm(0.0, 1.0);
148 <            }
149 <          } // else isLinear
150 <          
151 <          integrableObject->setJ(aJ);
152 <        }     //isDirectional
153 <      }
154 <    }             //end for (mol = beginMolecule(i); ...)
155 <    
156 <    
157 <    
158 <    removeComDrift();
159 <    // Remove angular drift if we are not using periodic boundary conditions.
160 <    if(!simParams->getUsePeriodicBoundaryConditions()) removeAngularDrift();
161 <    
162 <  }
163 <  
164 <  
165 <  
166 <  void Velocitizer::removeComDrift() {
167 <    // Get the Center of Mass drift velocity.
168 <    Vector3d vdrift = info_->getComVel();
169 <    
170 <    SimInfo::MoleculeIterator i;
171 <    Molecule::IntegrableObjectIterator j;
172 <    Molecule * mol;
173 <    StuntDouble * integrableObject;
174 <    
175 <    //  Corrects for the center of mass drift.
176 <    // sums all the momentum and divides by total mass.
177 <    for( mol = info_->beginMolecule(i); mol != NULL;
178 <         mol = info_->nextMolecule(i) ) {
179 <      for( integrableObject = mol->beginIntegrableObject(j);
180 <           integrableObject != NULL;
181 <           integrableObject = mol->nextIntegrableObject(j) ) {
182 <        integrableObject->setVel(integrableObject->getVel() - vdrift);
183 <      }
184 <    }
185 <    
186 <  }
187 <  
188 <  
189 <   void Velocitizer::removeAngularDrift() {
190 <      // Get the Center of Mass drift velocity.
191 <      
192 <      Vector3d vdrift;
193 <      Vector3d com;
194 <      
195 <      info_->getComAll(com,vdrift);
196 <        
197 <      Mat3x3d inertiaTensor;
198 <      Vector3d angularMomentum;
199 <      Vector3d omega;
200 <      
201 <      
202 <      
203 <      info_->getInertiaTensor(inertiaTensor,angularMomentum);
204 <      // We now need the inverse of the inertia tensor.
205 <      /*      
206 <      std::cerr << "Angular Momentum before is "
207 <                << angularMomentum <<  std::endl;
208 <      std::cerr << "Inertia Tensor before is "
209 <                << inertiaTensor <<  std::endl;
210 <      */
211 <      
212 <      inertiaTensor =inertiaTensor.inverse();
213 <      /*
214 <       std::cerr << "Inertia Tensor after inverse is "
215 <                << inertiaTensor <<  std::endl;
216 <      */
217 <      omega = inertiaTensor*angularMomentum;
218 <      
219 <      SimInfo::MoleculeIterator i;
220 <      Molecule::IntegrableObjectIterator j;
221 <      Molecule * mol;
222 <      StuntDouble * integrableObject;
223 <      Vector3d tempComPos;
224 <      
225 <      //  Corrects for the center of mass angular drift.
226 <      // sums all the angular momentum and divides by total mass.
227 <      for( mol = info_->beginMolecule(i); mol != NULL;
228 <           mol = info_->nextMolecule(i) ) {
229 <         for( integrableObject = mol->beginIntegrableObject(j);
230 <              integrableObject != NULL;
231 <              integrableObject = mol->nextIntegrableObject(j) ) {
232 <            tempComPos = integrableObject->getPos()-com;
233 <            integrableObject->setVel((integrableObject->getVel() - vdrift)-cross(omega,tempComPos));
234 <         }
235 <      }
236 <      
237 <      angularMomentum = info_->getAngularMomentum();
238 <      /*
239 <      std::cerr << "Angular Momentum after is "
240 <         << angularMomentum <<  std::endl;
241 <      */
242 <      
243 <   }
244 <  
245 <  
246 <  
247 <  
248 < }
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > #include "integrators/Velocitizer.hpp"
43 > #include "math/SquareMatrix3.hpp"
44 > #include "primitives/Molecule.hpp"
45 > #include "primitives/StuntDouble.hpp"
46 >
47 > #ifndef IS_MPI
48 > #include "math/SeqRandNumGen.hpp"
49 > #else
50 > #include "math/ParallelRandNumGen.hpp"
51 > #endif
52 >
53 > /* Remove me after testing*/
54 > #include <cstdio>
55 > #include <iostream>
56 > /*End remove me*/
57 >
58 > namespace oopse {
59 >  
60 >  Velocitizer::Velocitizer(SimInfo* info) : info_(info) {
61 >    
62 >    int seedValue;
63 >    Globals * simParams = info->getSimParams();
64 >    
65 > #ifndef IS_MPI
66 >    if (simParams->haveSeed()) {
67 >      seedValue = simParams->getSeed();
68 >      randNumGen_ = new SeqRandNumGen(seedValue);
69 >    }else {
70 >      randNumGen_ = new SeqRandNumGen();
71 >    }    
72 > #else
73 >    if (simParams->haveSeed()) {
74 >      seedValue = simParams->getSeed();
75 >      randNumGen_ = new ParallelRandNumGen(seedValue);
76 >    }else {
77 >      randNumGen_ = new ParallelRandNumGen();
78 >    }    
79 > #endif
80 >  }
81 >  
82 >  Velocitizer::~Velocitizer() {
83 >    delete randNumGen_;
84 >  }
85 >  
86 >  void Velocitizer::velocitize(RealType temperature) {
87 >    Vector3d aVel;
88 >    Vector3d aJ;
89 >    Mat3x3d I;
90 >    int l;
91 >    int m;
92 >    int n;
93 >    Vector3d vdrift;
94 >    RealType vbar;
95 >    /**@todo refactory kb */
96 >    const RealType kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
97 >    RealType av2;
98 >    RealType kebar;
99 >    
100 >    Globals * simParams = info_->getSimParams();
101 >    
102 >    SimInfo::MoleculeIterator i;
103 >    Molecule::IntegrableObjectIterator j;
104 >    Molecule * mol;
105 >    StuntDouble * integrableObject;
106 >        
107 >    kebar = kb * temperature * info_->getNdfRaw() / (2.0 * info_->getNdf());
108 >    for( mol = info_->beginMolecule(i); mol != NULL;
109 >         mol = info_->nextMolecule(i) ) {
110 >      for( integrableObject = mol->beginIntegrableObject(j);
111 >           integrableObject != NULL;
112 >           integrableObject = mol->nextIntegrableObject(j) ) {
113 >        
114 >        // uses equipartition theory to solve for vbar in angstrom/fs
115 >        
116 >        av2 = 2.0 * kebar / integrableObject->getMass();
117 >        vbar = sqrt(av2);
118 >        
119 >        // picks random velocities from a gaussian distribution
120 >        // centered on vbar
121 >        
122 >        for( int k = 0; k < 3; k++ ) {
123 >          aVel[k] = vbar * randNumGen_->randNorm(0.0, 1.0);
124 >        }
125 >        integrableObject->setVel(aVel);
126 >        
127 >        if (integrableObject->isDirectional()) {
128 >          I = integrableObject->getI();
129 >          
130 >          if (integrableObject->isLinear()) {
131 >            l = integrableObject->linearAxis();
132 >            m = (l + 1) % 3;
133 >            n = (l + 2) % 3;
134 >            
135 >            aJ[l] = 0.0;
136 >            vbar = sqrt(2.0 * kebar * I(m, m));
137 >            aJ[m] = vbar * randNumGen_->randNorm(0.0, 1.0);
138 >            vbar = sqrt(2.0 * kebar * I(n, n));
139 >            aJ[n] = vbar * randNumGen_->randNorm(0.0, 1.0);
140 >          } else {
141 >            for( int k = 0; k < 3; k++ ) {
142 >              vbar = sqrt(2.0 * kebar * I(k, k));
143 >              aJ[k] = vbar *randNumGen_->randNorm(0.0, 1.0);
144 >            }
145 >          } // else isLinear
146 >          
147 >          integrableObject->setJ(aJ);
148 >        }     //isDirectional
149 >      }
150 >    }             //end for (mol = beginMolecule(i); ...)
151 >    
152 >    
153 >    
154 >    removeComDrift();
155 >    // Remove angular drift if we are not using periodic boundary conditions.
156 >    if(!simParams->getUsePeriodicBoundaryConditions()) removeAngularDrift();
157 >    
158 >  }
159 >  
160 >  
161 >  
162 >  void Velocitizer::removeComDrift() {
163 >    // Get the Center of Mass drift velocity.
164 >    Vector3d vdrift = info_->getComVel();
165 >    
166 >    SimInfo::MoleculeIterator i;
167 >    Molecule::IntegrableObjectIterator j;
168 >    Molecule * mol;
169 >    StuntDouble * integrableObject;
170 >    
171 >    //  Corrects for the center of mass drift.
172 >    // sums all the momentum and divides by total mass.
173 >    for( mol = info_->beginMolecule(i); mol != NULL;
174 >         mol = info_->nextMolecule(i) ) {
175 >      for( integrableObject = mol->beginIntegrableObject(j);
176 >           integrableObject != NULL;
177 >           integrableObject = mol->nextIntegrableObject(j) ) {
178 >        integrableObject->setVel(integrableObject->getVel() - vdrift);
179 >      }
180 >    }
181 >    
182 >  }
183 >  
184 >  
185 >  void Velocitizer::removeAngularDrift() {
186 >    // Get the Center of Mass drift velocity.
187 >      
188 >    Vector3d vdrift;
189 >    Vector3d com;
190 >      
191 >    info_->getComAll(com,vdrift);
192 >        
193 >    Mat3x3d inertiaTensor;
194 >    Vector3d angularMomentum;
195 >    Vector3d omega;
196 >      
197 >      
198 >      
199 >    info_->getInertiaTensor(inertiaTensor,angularMomentum);
200 >    // We now need the inverse of the inertia tensor.
201 >    /*
202 >    std::cerr << "Angular Momentum before is "
203 >              << angularMomentum <<  std::endl;
204 >    std::cerr << "Inertia Tensor before is "
205 >              << inertiaTensor <<  std::endl;
206 >    */  
207 >    inertiaTensor =inertiaTensor.inverse();
208 >    /*
209 >    std::cerr << "Inertia Tensor after inverse is "
210 >              << inertiaTensor <<  std::endl;
211 >    */
212 >    omega = inertiaTensor*angularMomentum;
213 >      
214 >    SimInfo::MoleculeIterator i;
215 >    Molecule::IntegrableObjectIterator j;
216 >    Molecule * mol;
217 >    StuntDouble * integrableObject;
218 >    Vector3d tempComPos;
219 >      
220 >    //  Corrects for the center of mass angular drift.
221 >    // sums all the angular momentum and divides by total mass.
222 >    for( mol = info_->beginMolecule(i); mol != NULL;
223 >         mol = info_->nextMolecule(i) ) {
224 >      for( integrableObject = mol->beginIntegrableObject(j);
225 >           integrableObject != NULL;
226 >           integrableObject = mol->nextIntegrableObject(j) ) {
227 >        tempComPos = integrableObject->getPos()-com;
228 >        integrableObject->setVel((integrableObject->getVel() - vdrift)-cross(omega,tempComPos));
229 >      }
230 >    }
231 >      
232 >    angularMomentum = info_->getAngularMomentum();
233 >    /*
234 >    std::cerr << "Angular Momentum after is "
235 >              << angularMomentum <<  std::endl;
236 >    */
237 >      
238 >  }
239 >  
240 >  
241 >  
242 >  
243 > }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines