1 |
/* |
2 |
* Copyright (c) 2008, 2009 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Acknowledgement of the program authors must be made in any |
10 |
* publication of scientific results based in part on use of the |
11 |
* program. An acceptable form of acknowledgement is citation of |
12 |
* the article in which the program was described (Matthew |
13 |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
* |
18 |
* 2. Redistributions of source code must retain the above copyright |
19 |
* notice, this list of conditions and the following disclaimer. |
20 |
* |
21 |
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
* notice, this list of conditions and the following disclaimer in the |
23 |
* documentation and/or other materials provided with the |
24 |
* distribution. |
25 |
* |
26 |
* This software is provided "AS IS," without a warranty of any |
27 |
* kind. All express or implied conditions, representations and |
28 |
* warranties, including any implied warranty of merchantability, |
29 |
* fitness for a particular purpose or non-infringement, are hereby |
30 |
* excluded. The University of Notre Dame and its licensors shall not |
31 |
* be liable for any damages suffered by licensee as a result of |
32 |
* using, modifying or distributing the software or its |
33 |
* derivatives. In no event will the University of Notre Dame or its |
34 |
* licensors be liable for any lost revenue, profit or data, or for |
35 |
* direct, indirect, special, consequential, incidental or punitive |
36 |
* damages, however caused and regardless of the theory of liability, |
37 |
* arising out of the use of or inability to use software, even if the |
38 |
* University of Notre Dame has been advised of the possibility of |
39 |
* such damages. |
40 |
*/ |
41 |
#include <fstream> |
42 |
#include <iostream> |
43 |
#include "integrators/SMIPDForceManager.hpp" |
44 |
#include "utils/OOPSEConstant.hpp" |
45 |
#include "math/ConvexHull.hpp" |
46 |
#include "math/Triangle.hpp" |
47 |
|
48 |
namespace oopse { |
49 |
|
50 |
SMIPDForceManager::SMIPDForceManager(SimInfo* info) : ForceManager(info) { |
51 |
|
52 |
simParams = info->getSimParams(); |
53 |
veloMunge = new Velocitizer(info); |
54 |
|
55 |
// Create Hull, Convex Hull for now, other options later. |
56 |
|
57 |
surfaceMesh_ = new ConvexHull(); |
58 |
|
59 |
/* Check that the simulation has target pressure and target |
60 |
temperature set */ |
61 |
|
62 |
if (!simParams->haveTargetTemp()) { |
63 |
sprintf(painCave.errMsg, |
64 |
"SMIPDynamics error: You can't use the SMIPD integrator\n" |
65 |
"\twithout a targetTemp (K)!\n"); |
66 |
painCave.isFatal = 1; |
67 |
painCave.severity = OOPSE_ERROR; |
68 |
simError(); |
69 |
} else { |
70 |
targetTemp_ = simParams->getTargetTemp(); |
71 |
} |
72 |
|
73 |
if (!simParams->haveTargetPressure()) { |
74 |
sprintf(painCave.errMsg, |
75 |
"SMIPDynamics error: You can't use the SMIPD integrator\n" |
76 |
"\twithout a targetPressure (atm)!\n"); |
77 |
painCave.isFatal = 1; |
78 |
simError(); |
79 |
} else { |
80 |
// Convert pressure from atm -> amu/(fs^2*Ang) |
81 |
targetPressure_ = simParams->getTargetPressure() / |
82 |
OOPSEConstant::pressureConvert; |
83 |
} |
84 |
|
85 |
if (simParams->getUsePeriodicBoundaryConditions()) { |
86 |
sprintf(painCave.errMsg, |
87 |
"SMIPDynamics error: You can't use the SMIPD integrator\n" |
88 |
"\twith periodic boundary conditions!\n"); |
89 |
painCave.isFatal = 1; |
90 |
simError(); |
91 |
} |
92 |
|
93 |
if (!simParams->haveThermalConductivity()) { |
94 |
sprintf(painCave.errMsg, |
95 |
"SMIPDynamics error: You can't use the SMIPD integrator\n" |
96 |
"\twithout a thermalConductivity (W m^-1 K^-1)!\n"); |
97 |
painCave.isFatal = 1; |
98 |
painCave.severity = OOPSE_ERROR; |
99 |
simError(); |
100 |
}else{ |
101 |
thermalConductivity_ = simParams->getThermalConductivity() * |
102 |
OOPSEConstant::thermalConductivityConvert; |
103 |
} |
104 |
|
105 |
if (!simParams->haveThermalLength()) { |
106 |
sprintf(painCave.errMsg, |
107 |
"SMIPDynamics error: You can't use the SMIPD integrator\n" |
108 |
"\twithout a thermalLength (Angstroms)!\n"); |
109 |
painCave.isFatal = 1; |
110 |
painCave.severity = OOPSE_ERROR; |
111 |
simError(); |
112 |
}else{ |
113 |
thermalLength_ = simParams->getThermalLength(); |
114 |
} |
115 |
|
116 |
dt_ = simParams->getDt(); |
117 |
|
118 |
variance_ = 2.0 * OOPSEConstant::kb * targetTemp_ / dt_; |
119 |
|
120 |
// Build a vector of integrable objects to determine if the are |
121 |
// surface atoms |
122 |
Molecule* mol; |
123 |
StuntDouble* integrableObject; |
124 |
SimInfo::MoleculeIterator i; |
125 |
Molecule::IntegrableObjectIterator j; |
126 |
|
127 |
for (mol = info_->beginMolecule(i); mol != NULL; |
128 |
mol = info_->nextMolecule(i)) { |
129 |
for (integrableObject = mol->beginIntegrableObject(j); |
130 |
integrableObject != NULL; |
131 |
integrableObject = mol->nextIntegrableObject(j)) { |
132 |
localSites_.push_back(integrableObject); |
133 |
} |
134 |
} |
135 |
} |
136 |
|
137 |
void SMIPDForceManager::postCalculation(bool needStress){ |
138 |
SimInfo::MoleculeIterator i; |
139 |
Molecule::IntegrableObjectIterator j; |
140 |
Molecule* mol; |
141 |
StuntDouble* integrableObject; |
142 |
|
143 |
// Compute surface Mesh |
144 |
surfaceMesh_->computeHull(localSites_); |
145 |
|
146 |
// Get total area and number of surface stunt doubles |
147 |
RealType area = surfaceMesh_->getArea(); |
148 |
std::vector<Triangle> sMesh = surfaceMesh_->getMesh(); |
149 |
int nTriangles = sMesh.size(); |
150 |
|
151 |
// Generate all of the necessary random forces |
152 |
std::vector<RealType> randNums = genTriangleForces(nTriangles, variance_); |
153 |
|
154 |
// Loop over the mesh faces and apply external pressure to each |
155 |
// of the faces |
156 |
std::vector<Triangle>::iterator face; |
157 |
std::vector<StuntDouble*>::iterator vertex; |
158 |
int thisFacet = 0; |
159 |
for (face = sMesh.begin(); face != sMesh.end(); ++face){ |
160 |
Triangle thisTriangle = *face; |
161 |
std::vector<StuntDouble*> vertexSDs = thisTriangle.getVertices(); |
162 |
RealType thisArea = thisTriangle.getArea(); |
163 |
Vector3d unitNormal = thisTriangle.getNormal(); |
164 |
unitNormal.normalize(); |
165 |
Vector3d centroid = thisTriangle.getCentroid(); |
166 |
Vector3d facetVel = thisTriangle.getFacetVelocity(); |
167 |
RealType thisMass = thisTriangle.getFacetMass(); |
168 |
|
169 |
// gamma is the drag coefficient normal to the face of the triangle |
170 |
RealType gamma = thermalConductivity_ * thisMass * thisArea |
171 |
/ (2.0 * thermalLength_ * OOPSEConstant::kB); |
172 |
|
173 |
RealType extPressure = - (targetPressure_ * thisArea) / |
174 |
OOPSEConstant::energyConvert; |
175 |
RealType randomForce = randNums[thisFacet++] * sqrt(gamma); |
176 |
RealType dragForce = -gamma * dot(facetVel, unitNormal); |
177 |
|
178 |
Vector3d langevinForce = (extPressure + randomForce + dragForce) * |
179 |
unitNormal; |
180 |
|
181 |
// Apply triangle force to stuntdouble vertices |
182 |
for (vertex = vertexSDs.begin(); vertex != vertexSDs.end(); ++vertex){ |
183 |
if ((*vertex) != NULL){ |
184 |
Vector3d vertexForce = langevinForce / 3.0; |
185 |
(*vertex)->addFrc(vertexForce); |
186 |
} |
187 |
} |
188 |
} |
189 |
|
190 |
veloMunge->removeComDrift(); |
191 |
veloMunge->removeAngularDrift(); |
192 |
|
193 |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
194 |
currSnapshot->setVolume(surfaceMesh_->getVolume()); |
195 |
ForceManager::postCalculation(needStress); |
196 |
} |
197 |
|
198 |
|
199 |
std::vector<RealType> SMIPDForceManager::genTriangleForces(int nTriangles, |
200 |
RealType variance) |
201 |
{ |
202 |
|
203 |
// zero fill the random vector before starting: |
204 |
std::vector<RealType> gaussRand; |
205 |
gaussRand.resize(nTriangles); |
206 |
std::fill(gaussRand.begin(), gaussRand.end(), 0.0); |
207 |
|
208 |
#ifdef IS_MPI |
209 |
if (worldRank == 0) { |
210 |
#endif |
211 |
for (int i = 0; i < nTriangles; i++) { |
212 |
gaussRand[i] = randNumGen_.randNorm(0.0, variance); |
213 |
} |
214 |
#ifdef IS_MPI |
215 |
} |
216 |
#endif |
217 |
|
218 |
// push these out to the other processors |
219 |
|
220 |
#ifdef IS_MPI |
221 |
if (worldRank == 0) { |
222 |
MPI::COMM_WORLD.Bcast(&gaussRand[0], nTriangles, MPI::REALTYPE, 0); |
223 |
} else { |
224 |
MPI::COMM_WORLD.Bcast(&gaussRand[0], nTriangles, MPI::REALTYPE, 0); |
225 |
} |
226 |
#endif |
227 |
|
228 |
return gaussRand; |
229 |
} |
230 |
} |