ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/integrators/RNEMD.cpp
(Generate patch)

Comparing trunk/src/integrators/RNEMD.cpp (file contents):
Revision 1330 by skuang, Thu Mar 19 21:03:36 2009 UTC vs.
Revision 1561 by gezelter, Wed May 11 19:04:40 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42 + #include <cmath>
43   #include "integrators/RNEMD.hpp"
44 + #include "math/Vector3.hpp"
45   #include "math/SquareMatrix3.hpp"
46 + #include "math/Polynomial.hpp"
47   #include "primitives/Molecule.hpp"
48   #include "primitives/StuntDouble.hpp"
49 + #include "utils/PhysicalConstants.hpp"
50 + #include "utils/Tuple.hpp"
51  
52   #ifndef IS_MPI
53   #include "math/SeqRandNumGen.hpp"
# Line 50 | Line 55
55   #include "math/ParallelRandNumGen.hpp"
56   #endif
57  
58 < /* Remove me after testing*/
54 < /*
55 < #include <cstdio>
56 < #include <iostream>
57 < */
58 < /*End remove me*/
58 > #define HONKING_LARGE_VALUE 1.0e10
59  
60 < namespace oopse {
60 > using namespace std;
61 > namespace OpenMD {
62    
63 <  RNEMD::RNEMD(SimInfo* info) : info_(info) {
64 <    
63 >  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
64 >                                usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
65 >
66 >    failTrialCount_ = 0;
67 >    failRootCount_ = 0;
68 >
69      int seedValue;
70      Globals * simParams = info->getSimParams();
71  
72 <    stringToEnumMap_["Kinetic"] = rnemdKinetic;
72 >    stringToEnumMap_["KineticSwap"] = rnemdKineticSwap;
73 >    stringToEnumMap_["KineticScale"] = rnemdKineticScale;
74 >    stringToEnumMap_["PxScale"] = rnemdPxScale;
75 >    stringToEnumMap_["PyScale"] = rnemdPyScale;
76 >    stringToEnumMap_["PzScale"] = rnemdPzScale;
77      stringToEnumMap_["Px"] = rnemdPx;
78      stringToEnumMap_["Py"] = rnemdPy;
79      stringToEnumMap_["Pz"] = rnemdPz;
80      stringToEnumMap_["Unknown"] = rnemdUnknown;
81  
82 <    const std::string st = simParams->getRNEMD_swapType();
82 >    rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
83 >    evaluator_.loadScriptString(rnemdObjectSelection_);
84 >    seleMan_.setSelectionSet(evaluator_.evaluate());
85  
86 <    std::map<std::string, RNEMDTypeEnum>::iterator i;
86 >    // do some sanity checking
87 >
88 >    int selectionCount = seleMan_.getSelectionCount();
89 >    int nIntegrable = info->getNGlobalIntegrableObjects();
90 >
91 >    if (selectionCount > nIntegrable) {
92 >      sprintf(painCave.errMsg,
93 >              "RNEMD: The current RNEMD_objectSelection,\n"
94 >              "\t\t%s\n"
95 >              "\thas resulted in %d selected objects.  However,\n"
96 >              "\tthe total number of integrable objects in the system\n"
97 >              "\tis only %d.  This is almost certainly not what you want\n"
98 >              "\tto do.  A likely cause of this is forgetting the _RB_0\n"
99 >              "\tselector in the selection script!\n",
100 >              rnemdObjectSelection_.c_str(),
101 >              selectionCount, nIntegrable);
102 >      painCave.isFatal = 0;
103 >      painCave.severity = OPENMD_WARNING;
104 >      simError();
105 >    }
106 >    
107 >    const string st = simParams->getRNEMD_exchangeType();
108 >
109 >    map<string, RNEMDTypeEnum>::iterator i;
110      i = stringToEnumMap_.find(st);
111 <    rnemdType_  = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
111 >    rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
112 >    if (rnemdType_ == rnemdUnknown) {
113 >      sprintf(painCave.errMsg,
114 >              "RNEMD: The current RNEMD_exchangeType,\n"
115 >              "\t\t%s\n"
116 >              "\tis not one of the recognized exchange types.\n",
117 >              st.c_str());
118 >      painCave.isFatal = 1;
119 >      painCave.severity = OPENMD_ERROR;
120 >      simError();
121 >    }
122 >    
123 >    output3DTemp_ = false;
124 >    if (simParams->haveRNEMD_outputDimensionalTemperature()) {
125 >      output3DTemp_ = simParams->getRNEMD_outputDimensionalTemperature();
126 >    }
127  
128 + #ifdef IS_MPI
129 +    if (worldRank == 0) {
130 + #endif
131  
132 <    set_RNEMD_swapTime(simParams->getRNEMD_swapTime());
132 >      string rnemdFileName;
133 >      switch(rnemdType_) {
134 >      case rnemdKineticSwap :
135 >      case rnemdKineticScale :
136 >        rnemdFileName = "temperature.log";
137 >        break;
138 >      case rnemdPx :
139 >      case rnemdPxScale :
140 >      case rnemdPy :
141 >      case rnemdPyScale :
142 >        rnemdFileName = "momemtum.log";
143 >        break;
144 >      case rnemdPz :
145 >      case rnemdPzScale :
146 >      case rnemdUnknown :
147 >      default :
148 >        rnemdFileName = "rnemd.log";
149 >        break;
150 >      }
151 >      rnemdLog_.open(rnemdFileName.c_str());
152 >
153 >      string xTempFileName;
154 >      string yTempFileName;
155 >      string zTempFileName;
156 >      if (output3DTemp_) {
157 >        xTempFileName = "temperatureX.log";
158 >        yTempFileName = "temperatureY.log";
159 >        zTempFileName = "temperatureZ.log";
160 >        xTempLog_.open(xTempFileName.c_str());
161 >        yTempLog_.open(yTempFileName.c_str());
162 >        zTempLog_.open(zTempFileName.c_str());
163 >      }
164 >
165 > #ifdef IS_MPI
166 >    }
167 > #endif
168 >
169 >    set_RNEMD_exchange_time(simParams->getRNEMD_exchangeTime());
170      set_RNEMD_nBins(simParams->getRNEMD_nBins());
171 <    exchangeSum_ = 0.0;
172 <    
171 >    midBin_ = nBins_ / 2;
172 >    if (simParams->haveRNEMD_binShift()) {
173 >      if (simParams->getRNEMD_binShift()) {
174 >        zShift_ = 0.5 / (RealType)(nBins_);
175 >      } else {
176 >        zShift_ = 0.0;
177 >      }
178 >    } else {
179 >      zShift_ = 0.0;
180 >    }
181 >    //cerr << "we have zShift_ = " << zShift_ << "\n";
182 >    //shift slabs by half slab width, might be useful in heterogeneous systems
183 >    //set to 0.0 if not using it; can NOT be used in status output yet
184 >    if (simParams->haveRNEMD_logWidth()) {
185 >      set_RNEMD_logWidth(simParams->getRNEMD_logWidth());
186 >      /*arbitary rnemdLogWidth_ no checking
187 >        if (rnemdLogWidth_ != nBins_ && rnemdLogWidth_ != midBin_ + 1) {
188 >        cerr << "WARNING! RNEMD_logWidth has abnormal value!\n";
189 >        cerr << "Automaically set back to default.\n";
190 >        rnemdLogWidth_ = nBins_;
191 >        }*/
192 >    } else {
193 >      set_RNEMD_logWidth(nBins_);
194 >    }
195 >    valueHist_.resize(rnemdLogWidth_, 0.0);
196 >    valueCount_.resize(rnemdLogWidth_, 0);
197 >    xTempHist_.resize(rnemdLogWidth_, 0.0);
198 >    yTempHist_.resize(rnemdLogWidth_, 0.0);
199 >    zTempHist_.resize(rnemdLogWidth_, 0.0);
200 >    xyzTempCount_.resize(rnemdLogWidth_, 0);
201 >
202 >    set_RNEMD_exchange_total(0.0);
203 >    if (simParams->haveRNEMD_targetFlux()) {
204 >      set_RNEMD_target_flux(simParams->getRNEMD_targetFlux());
205 >    } else {
206 >      set_RNEMD_target_flux(0.0);
207 >    }
208 >
209   #ifndef IS_MPI
210      if (simParams->haveSeed()) {
211        seedValue = simParams->getSeed();
# Line 100 | Line 225 | namespace oopse {
225    
226    RNEMD::~RNEMD() {
227      delete randNumGen_;
228 +    
229 + #ifdef IS_MPI
230 +    if (worldRank == 0) {
231 + #endif
232 +      
233 +      sprintf(painCave.errMsg,
234 +              "RNEMD: total failed trials: %d\n",
235 +              failTrialCount_);
236 +      painCave.isFatal = 0;
237 +      painCave.severity = OPENMD_INFO;
238 +      simError();
239 +
240 +      rnemdLog_.close();
241 +      if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPyScale) {
242 +        sprintf(painCave.errMsg,
243 +                "RNEMD: total root-checking warnings: %d\n",
244 +                failRootCount_);
245 +        painCave.isFatal = 0;
246 +        painCave.severity = OPENMD_INFO;
247 +        simError();
248 +      }
249 +      if (output3DTemp_) {
250 +        xTempLog_.close();
251 +        yTempLog_.close();
252 +        zTempLog_.close();
253 +      }
254 + #ifdef IS_MPI
255 +    }
256 + #endif
257    }
258  
259    void RNEMD::doSwap() {
260 <    std::cerr << "in RNEMD!\n";  
261 <    std::cerr << "nBins = " << nBins_ << "\n";
262 <    std::cerr << "swapTime = " << swapTime_ << "\n";
263 <    std::cerr << "exchangeSum = " << exchangeSum_ << "\n";
264 <    std::cerr << "swapType = " << rnemdType_ << "\n";
265 <  }  
260 >
261 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
262 >    Mat3x3d hmat = currentSnap_->getHmat();
263 >
264 >    seleMan_.setSelectionSet(evaluator_.evaluate());
265 >
266 >    int selei;
267 >    StuntDouble* sd;
268 >    int idx;
269 >
270 >    RealType min_val;
271 >    bool min_found = false;  
272 >    StuntDouble* min_sd;
273 >
274 >    RealType max_val;
275 >    bool max_found = false;
276 >    StuntDouble* max_sd;
277 >
278 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
279 >         sd = seleMan_.nextSelected(selei)) {
280 >
281 >      idx = sd->getLocalIndex();
282 >
283 >      Vector3d pos = sd->getPos();
284 >
285 >      // wrap the stuntdouble's position back into the box:
286 >
287 >      if (usePeriodicBoundaryConditions_)
288 >        currentSnap_->wrapVector(pos);
289 >
290 >      // which bin is this stuntdouble in?
291 >      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
292 >
293 >      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
294 >
295 >
296 >      // if we're in bin 0 or the middleBin
297 >      if (binNo == 0 || binNo == midBin_) {
298 >        
299 >        RealType mass = sd->getMass();
300 >        Vector3d vel = sd->getVel();
301 >        RealType value;
302 >
303 >        switch(rnemdType_) {
304 >        case rnemdKineticSwap :
305 >          
306 >          value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
307 >                          vel[2]*vel[2]);
308 >          /*
309 >            if (sd->isDirectional()) {
310 >            Vector3d angMom = sd->getJ();
311 >            Mat3x3d I = sd->getI();
312 >            
313 >            if (sd->isLinear()) {
314 >            int i = sd->linearAxis();
315 >            int j = (i + 1) % 3;
316 >            int k = (i + 2) % 3;
317 >            value += angMom[j] * angMom[j] / I(j, j) +
318 >            angMom[k] * angMom[k] / I(k, k);
319 >            } else {                        
320 >            value += angMom[0]*angMom[0]/I(0, 0)
321 >            + angMom[1]*angMom[1]/I(1, 1)
322 >            + angMom[2]*angMom[2]/I(2, 2);
323 >            }
324 >            } no exchange of angular momenta
325 >          */
326 >          //make exchangeSum_ comparable between swap & scale
327 >          //temporarily without using energyConvert
328 >          //value = value * 0.5 / PhysicalConstants::energyConvert;
329 >          value *= 0.5;
330 >          break;
331 >        case rnemdPx :
332 >          value = mass * vel[0];
333 >          break;
334 >        case rnemdPy :
335 >          value = mass * vel[1];
336 >          break;
337 >        case rnemdPz :
338 >          value = mass * vel[2];
339 >          break;
340 >        default :
341 >          break;
342 >        }
343 >        
344 >        if (binNo == 0) {
345 >          if (!min_found) {
346 >            min_val = value;
347 >            min_sd = sd;
348 >            min_found = true;
349 >          } else {
350 >            if (min_val > value) {
351 >              min_val = value;
352 >              min_sd = sd;
353 >            }
354 >          }
355 >        } else { //midBin_
356 >          if (!max_found) {
357 >            max_val = value;
358 >            max_sd = sd;
359 >            max_found = true;
360 >          } else {
361 >            if (max_val < value) {
362 >              max_val = value;
363 >              max_sd = sd;
364 >            }
365 >          }      
366 >        }
367 >      }
368 >    }
369 >
370 > #ifdef IS_MPI
371 >    int nProc, worldRank;
372 >
373 >    nProc = MPI::COMM_WORLD.Get_size();
374 >    worldRank = MPI::COMM_WORLD.Get_rank();
375 >
376 >    bool my_min_found = min_found;
377 >    bool my_max_found = max_found;
378 >
379 >    // Even if we didn't find a minimum, did someone else?
380 >    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
381 >    // Even if we didn't find a maximum, did someone else?
382 >    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
383 >    struct {
384 >      RealType val;
385 >      int rank;
386 >    } max_vals, min_vals;
387 >    
388 >    if (min_found) {
389 >      if (my_min_found)
390 >        min_vals.val = min_val;
391 >      else
392 >        min_vals.val = HONKING_LARGE_VALUE;
393 >      
394 >      min_vals.rank = worldRank;    
395 >      
396 >      // Who had the minimum?
397 >      MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
398 >                                1, MPI::REALTYPE_INT, MPI::MINLOC);
399 >      min_val = min_vals.val;
400 >    }
401 >      
402 >    if (max_found) {
403 >      if (my_max_found)
404 >        max_vals.val = max_val;
405 >      else
406 >        max_vals.val = -HONKING_LARGE_VALUE;
407 >      
408 >      max_vals.rank = worldRank;    
409 >      
410 >      // Who had the maximum?
411 >      MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
412 >                                1, MPI::REALTYPE_INT, MPI::MAXLOC);
413 >      max_val = max_vals.val;
414 >    }
415 > #endif
416 >
417 >    if (max_found && min_found) {
418 >      if (min_val < max_val) {
419 >
420 > #ifdef IS_MPI      
421 >        if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
422 >          // I have both maximum and minimum, so proceed like a single
423 >          // processor version:
424 > #endif
425 >          // objects to be swapped: velocity ONLY
426 >          Vector3d min_vel = min_sd->getVel();
427 >          Vector3d max_vel = max_sd->getVel();
428 >          RealType temp_vel;
429 >          
430 >          switch(rnemdType_) {
431 >          case rnemdKineticSwap :
432 >            min_sd->setVel(max_vel);
433 >            max_sd->setVel(min_vel);
434 >            /*
435 >              if (min_sd->isDirectional() && max_sd->isDirectional()) {
436 >              Vector3d min_angMom = min_sd->getJ();
437 >              Vector3d max_angMom = max_sd->getJ();
438 >              min_sd->setJ(max_angMom);
439 >              max_sd->setJ(min_angMom);
440 >              } no angular momentum exchange
441 >            */
442 >            break;
443 >          case rnemdPx :
444 >            temp_vel = min_vel.x();
445 >            min_vel.x() = max_vel.x();
446 >            max_vel.x() = temp_vel;
447 >            min_sd->setVel(min_vel);
448 >            max_sd->setVel(max_vel);
449 >            break;
450 >          case rnemdPy :
451 >            temp_vel = min_vel.y();
452 >            min_vel.y() = max_vel.y();
453 >            max_vel.y() = temp_vel;
454 >            min_sd->setVel(min_vel);
455 >            max_sd->setVel(max_vel);
456 >            break;
457 >          case rnemdPz :
458 >            temp_vel = min_vel.z();
459 >            min_vel.z() = max_vel.z();
460 >            max_vel.z() = temp_vel;
461 >            min_sd->setVel(min_vel);
462 >            max_sd->setVel(max_vel);
463 >            break;
464 >          default :
465 >            break;
466 >          }
467 > #ifdef IS_MPI
468 >          // the rest of the cases only apply in parallel simulations:
469 >        } else if (max_vals.rank == worldRank) {
470 >          // I had the max, but not the minimum
471 >          
472 >          Vector3d min_vel;
473 >          Vector3d max_vel = max_sd->getVel();
474 >          MPI::Status status;
475 >
476 >          // point-to-point swap of the velocity vector
477 >          MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE,
478 >                                   min_vals.rank, 0,
479 >                                   min_vel.getArrayPointer(), 3, MPI::REALTYPE,
480 >                                   min_vals.rank, 0, status);
481 >          
482 >          switch(rnemdType_) {
483 >          case rnemdKineticSwap :
484 >            max_sd->setVel(min_vel);
485 >            //no angular momentum exchange for now
486 >            /*
487 >            if (max_sd->isDirectional()) {
488 >              Vector3d min_angMom;
489 >              Vector3d max_angMom = max_sd->getJ();
490 >              
491 >              // point-to-point swap of the angular momentum vector
492 >              MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
493 >                                       MPI::REALTYPE, min_vals.rank, 1,
494 >                                       min_angMom.getArrayPointer(), 3,
495 >                                       MPI::REALTYPE, min_vals.rank, 1,
496 >                                       status);
497 >              
498 >              max_sd->setJ(min_angMom);
499 >             }
500 >             */            
501 >            break;
502 >          case rnemdPx :
503 >            max_vel.x() = min_vel.x();
504 >            max_sd->setVel(max_vel);
505 >            break;
506 >          case rnemdPy :
507 >            max_vel.y() = min_vel.y();
508 >            max_sd->setVel(max_vel);
509 >            break;
510 >          case rnemdPz :
511 >            max_vel.z() = min_vel.z();
512 >            max_sd->setVel(max_vel);
513 >            break;
514 >          default :
515 >            break;
516 >          }
517 >        } else if (min_vals.rank == worldRank) {
518 >          // I had the minimum but not the maximum:
519 >          
520 >          Vector3d max_vel;
521 >          Vector3d min_vel = min_sd->getVel();
522 >          MPI::Status status;
523 >          
524 >          // point-to-point swap of the velocity vector
525 >          MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE,
526 >                                   max_vals.rank, 0,
527 >                                   max_vel.getArrayPointer(), 3, MPI::REALTYPE,
528 >                                   max_vals.rank, 0, status);
529 >          
530 >          switch(rnemdType_) {
531 >          case rnemdKineticSwap :
532 >            min_sd->setVel(max_vel);
533 >            // no angular momentum exchange for now
534 >            /*
535 >            if (min_sd->isDirectional()) {
536 >              Vector3d min_angMom = min_sd->getJ();
537 >              Vector3d max_angMom;
538 >              
539 >              // point-to-point swap of the angular momentum vector
540 >              MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
541 >                                       MPI::REALTYPE, max_vals.rank, 1,
542 >                                       max_angMom.getArrayPointer(), 3,
543 >                                       MPI::REALTYPE, max_vals.rank, 1,
544 >                                       status);
545 >              
546 >              min_sd->setJ(max_angMom);
547 >            }
548 >            */
549 >            break;
550 >          case rnemdPx :
551 >            min_vel.x() = max_vel.x();
552 >            min_sd->setVel(min_vel);
553 >            break;
554 >          case rnemdPy :
555 >            min_vel.y() = max_vel.y();
556 >            min_sd->setVel(min_vel);
557 >            break;
558 >          case rnemdPz :
559 >            min_vel.z() = max_vel.z();
560 >            min_sd->setVel(min_vel);
561 >            break;
562 >          default :
563 >            break;
564 >          }
565 >        }
566 > #endif
567 >        exchangeSum_ += max_val - min_val;
568 >      } else {        
569 >        sprintf(painCave.errMsg,
570 >                "RNEMD: exchange NOT performed because min_val > max_val\n");
571 >        painCave.isFatal = 0;
572 >        painCave.severity = OPENMD_INFO;
573 >        simError();        
574 >        failTrialCount_++;
575 >      }
576 >    } else {
577 >      sprintf(painCave.errMsg,
578 >              "RNEMD: exchange NOT performed because at least one\n"
579 >              "\tof the two slabs is empty\n");
580 >      painCave.isFatal = 0;
581 >      painCave.severity = OPENMD_INFO;
582 >      simError();        
583 >      failTrialCount_++;
584 >    }
585 >    
586 >  }
587 >  
588 >  void RNEMD::doScale() {
589 >
590 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
591 >    Mat3x3d hmat = currentSnap_->getHmat();
592 >
593 >    seleMan_.setSelectionSet(evaluator_.evaluate());
594 >
595 >    int selei;
596 >    StuntDouble* sd;
597 >    int idx;
598 >
599 >    vector<StuntDouble*> hotBin, coldBin;
600 >
601 >    RealType Phx = 0.0;
602 >    RealType Phy = 0.0;
603 >    RealType Phz = 0.0;
604 >    RealType Khx = 0.0;
605 >    RealType Khy = 0.0;
606 >    RealType Khz = 0.0;
607 >    RealType Pcx = 0.0;
608 >    RealType Pcy = 0.0;
609 >    RealType Pcz = 0.0;
610 >    RealType Kcx = 0.0;
611 >    RealType Kcy = 0.0;
612 >    RealType Kcz = 0.0;
613 >
614 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
615 >         sd = seleMan_.nextSelected(selei)) {
616 >
617 >      idx = sd->getLocalIndex();
618 >
619 >      Vector3d pos = sd->getPos();
620 >
621 >      // wrap the stuntdouble's position back into the box:
622 >
623 >      if (usePeriodicBoundaryConditions_)
624 >        currentSnap_->wrapVector(pos);
625 >
626 >      // which bin is this stuntdouble in?
627 >      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
628 >
629 >      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
630 >
631 >      // if we're in bin 0 or the middleBin
632 >      if (binNo == 0 || binNo == midBin_) {
633 >        
634 >        RealType mass = sd->getMass();
635 >        Vector3d vel = sd->getVel();
636 >      
637 >        if (binNo == 0) {
638 >          hotBin.push_back(sd);
639 >          Phx += mass * vel.x();
640 >          Phy += mass * vel.y();
641 >          Phz += mass * vel.z();
642 >          Khx += mass * vel.x() * vel.x();
643 >          Khy += mass * vel.y() * vel.y();
644 >          Khz += mass * vel.z() * vel.z();
645 >        } else { //midBin_
646 >          coldBin.push_back(sd);
647 >          Pcx += mass * vel.x();
648 >          Pcy += mass * vel.y();
649 >          Pcz += mass * vel.z();
650 >          Kcx += mass * vel.x() * vel.x();
651 >          Kcy += mass * vel.y() * vel.y();
652 >          Kcz += mass * vel.z() * vel.z();
653 >        }
654 >      }
655 >    }
656 >
657 >    Khx *= 0.5;
658 >    Khy *= 0.5;
659 >    Khz *= 0.5;
660 >    Kcx *= 0.5;
661 >    Kcy *= 0.5;
662 >    Kcz *= 0.5;
663 >
664 > #ifdef IS_MPI
665 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
666 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
667 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
668 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
669 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
670 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
671 >
672 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
673 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
674 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
675 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
676 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
677 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
678 > #endif
679 >
680 >    //use coldBin coeff's
681 >    RealType px = Pcx / Phx;
682 >    RealType py = Pcy / Phy;
683 >    RealType pz = Pcz / Phz;
684 >
685 >    RealType a000, a110, c0, a001, a111, b01, b11, c1, c;
686 >    switch(rnemdType_) {
687 >    case rnemdKineticScale :
688 >      // used hotBin coeff's & only scale x & y dimensions
689 >      /*
690 >      RealType px = Phx / Pcx;
691 >      RealType py = Phy / Pcy;
692 >      a110 = Khy;
693 >      c0 = - Khx - Khy - targetFlux_;
694 >      a000 = Khx;
695 >      a111 = Kcy * py * py;
696 >      b11 = -2.0 * Kcy * py * (1.0 + py);
697 >      c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_;
698 >      b01 = -2.0 * Kcx * px * (1.0 + px);
699 >      a001 = Kcx * px * px;
700 >      */
701 >      //scale all three dimensions, let c_x = c_y
702 >      a000 = Kcx + Kcy;
703 >      a110 = Kcz;
704 >      c0 = targetFlux_ - Kcx - Kcy - Kcz;
705 >      a001 = Khx * px * px + Khy * py * py;
706 >      a111 = Khz * pz * pz;
707 >      b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
708 >      b11 = -2.0 * Khz * pz * (1.0 + pz);
709 >      c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
710 >        + Khz * pz * (2.0 + pz) - targetFlux_;
711 >      break;
712 >    case rnemdPxScale :
713 >      c = 1 - targetFlux_ / Pcx;
714 >      a000 = Kcy;
715 >      a110 = Kcz;
716 >      c0 = Kcx * c * c - Kcx - Kcy - Kcz;
717 >      a001 = py * py * Khy;
718 >      a111 = pz * pz * Khz;
719 >      b01 = -2.0 * Khy * py * (1.0 + py);
720 >      b11 = -2.0 * Khz * pz * (1.0 + pz);
721 >      c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
722 >        + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
723 >      break;
724 >    case rnemdPyScale :
725 >      c = 1 - targetFlux_ / Pcy;
726 >      a000 = Kcx;
727 >      a110 = Kcz;
728 >      c0 = Kcy * c * c - Kcx - Kcy - Kcz;
729 >      a001 = px * px * Khx;
730 >      a111 = pz * pz * Khz;
731 >      b01 = -2.0 * Khx * px * (1.0 + px);
732 >      b11 = -2.0 * Khz * pz * (1.0 + pz);
733 >      c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
734 >        + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
735 >      break;
736 >    case rnemdPzScale ://we don't really do this, do we?
737 >      c = 1 - targetFlux_ / Pcz;
738 >      a000 = Kcx;
739 >      a110 = Kcy;
740 >      c0 = Kcz * c * c - Kcx - Kcy - Kcz;
741 >      a001 = px * px * Khx;
742 >      a111 = py * py * Khy;
743 >      b01 = -2.0 * Khx * px * (1.0 + px);
744 >      b11 = -2.0 * Khy * py * (1.0 + py);
745 >      c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
746 >        + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
747 >      break;      
748 >    default :
749 >      break;
750 >    }
751 >
752 >    RealType v1 = a000 * a111 - a001 * a110;
753 >    RealType v2 = a000 * b01;
754 >    RealType v3 = a000 * b11;
755 >    RealType v4 = a000 * c1 - a001 * c0;
756 >    RealType v8 = a110 * b01;
757 >    RealType v10 = - b01 * c0;
758 >
759 >    RealType u0 = v2 * v10 - v4 * v4;
760 >    RealType u1 = -2.0 * v3 * v4;
761 >    RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
762 >    RealType u3 = -2.0 * v1 * v3;
763 >    RealType u4 = - v1 * v1;
764 >    //rescale coefficients
765 >    RealType maxAbs = fabs(u0);
766 >    if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
767 >    if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
768 >    if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
769 >    if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
770 >    u0 /= maxAbs;
771 >    u1 /= maxAbs;
772 >    u2 /= maxAbs;
773 >    u3 /= maxAbs;
774 >    u4 /= maxAbs;
775 >    //max_element(start, end) is also available.
776 >    Polynomial<RealType> poly; //same as DoublePolynomial poly;
777 >    poly.setCoefficient(4, u4);
778 >    poly.setCoefficient(3, u3);
779 >    poly.setCoefficient(2, u2);
780 >    poly.setCoefficient(1, u1);
781 >    poly.setCoefficient(0, u0);
782 >    vector<RealType> realRoots = poly.FindRealRoots();
783 >
784 >    vector<RealType>::iterator ri;
785 >    RealType r1, r2, alpha0;
786 >    vector<pair<RealType,RealType> > rps;
787 >    for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
788 >      r2 = *ri;
789 >      //check if FindRealRoots() give the right answer
790 >      if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
791 >        sprintf(painCave.errMsg,
792 >                "RNEMD Warning: polynomial solve seems to have an error!");
793 >        painCave.isFatal = 0;
794 >        simError();
795 >        failRootCount_++;
796 >      }
797 >      //might not be useful w/o rescaling coefficients
798 >      alpha0 = -c0 - a110 * r2 * r2;
799 >      if (alpha0 >= 0.0) {
800 >        r1 = sqrt(alpha0 / a000);
801 >        if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) < 1e-6)
802 >          { rps.push_back(make_pair(r1, r2)); }
803 >        if (r1 > 1e-6) { //r1 non-negative
804 >          r1 = -r1;
805 >          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) <1e-6)
806 >            { rps.push_back(make_pair(r1, r2)); }
807 >        }
808 >      }
809 >    }
810 >    // Consider combining together the solving pair part w/ the searching
811 >    // best solution part so that we don't need the pairs vector
812 >    if (!rps.empty()) {
813 >      RealType smallestDiff = HONKING_LARGE_VALUE;
814 >      RealType diff;
815 >      pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
816 >      vector<pair<RealType,RealType> >::iterator rpi;
817 >      for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
818 >        r1 = (*rpi).first;
819 >        r2 = (*rpi).second;
820 >        switch(rnemdType_) {
821 >        case rnemdKineticScale :
822 >          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
823 >            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
824 >            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
825 >          break;
826 >        case rnemdPxScale :
827 >          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
828 >            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
829 >          break;
830 >        case rnemdPyScale :
831 >          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
832 >            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
833 >          break;
834 >        case rnemdPzScale :
835 >          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
836 >            + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
837 >        default :
838 >          break;
839 >        }
840 >        if (diff < smallestDiff) {
841 >          smallestDiff = diff;
842 >          bestPair = *rpi;
843 >        }
844 >      }
845 > #ifdef IS_MPI
846 >      if (worldRank == 0) {
847 > #endif
848 >        sprintf(painCave.errMsg,
849 >                "RNEMD: roots r1= %lf\tr2 = %lf\n",
850 >                bestPair.first, bestPair.second);
851 >        painCave.isFatal = 0;
852 >        painCave.severity = OPENMD_INFO;
853 >        simError();
854 > #ifdef IS_MPI
855 >      }
856 > #endif
857 >      
858 >      RealType x, y, z;
859 >      switch(rnemdType_) {
860 >      case rnemdKineticScale :
861 >        x = bestPair.first;
862 >        y = bestPair.first;
863 >        z = bestPair.second;
864 >        break;
865 >      case rnemdPxScale :
866 >        x = c;
867 >        y = bestPair.first;
868 >        z = bestPair.second;
869 >        break;
870 >      case rnemdPyScale :
871 >        x = bestPair.first;
872 >        y = c;
873 >        z = bestPair.second;
874 >        break;
875 >      case rnemdPzScale :
876 >        x = bestPair.first;
877 >        y = bestPair.second;
878 >        z = c;
879 >        break;          
880 >      default :
881 >        break;
882 >      }
883 >      vector<StuntDouble*>::iterator sdi;
884 >      Vector3d vel;
885 >      for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
886 >        vel = (*sdi)->getVel();
887 >        vel.x() *= x;
888 >        vel.y() *= y;
889 >        vel.z() *= z;
890 >        (*sdi)->setVel(vel);
891 >      }
892 >      //convert to hotBin coefficient
893 >      x = 1.0 + px * (1.0 - x);
894 >      y = 1.0 + py * (1.0 - y);
895 >      z = 1.0 + pz * (1.0 - z);
896 >      for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
897 >        vel = (*sdi)->getVel();
898 >        vel.x() *= x;
899 >        vel.y() *= y;
900 >        vel.z() *= z;
901 >        (*sdi)->setVel(vel);
902 >      }
903 >      exchangeSum_ += targetFlux_;
904 >      //we may want to check whether the exchange has been successful
905 >    } else {
906 >      sprintf(painCave.errMsg,
907 >              "RNEMD: exchange NOT performed!\n");
908 >      painCave.isFatal = 0;
909 >      painCave.severity = OPENMD_INFO;
910 >      simError();        
911 >      failTrialCount_++;
912 >    }
913 >
914 >  }
915 >
916 >  void RNEMD::doRNEMD() {
917 >
918 >    switch(rnemdType_) {
919 >    case rnemdKineticScale :
920 >    case rnemdPxScale :
921 >    case rnemdPyScale :
922 >    case rnemdPzScale :
923 >      doScale();
924 >      break;
925 >    case rnemdKineticSwap :
926 >    case rnemdPx :
927 >    case rnemdPy :
928 >    case rnemdPz :
929 >      doSwap();
930 >      break;
931 >    case rnemdUnknown :
932 >    default :
933 >      break;
934 >    }
935 >  }
936 >
937 >  void RNEMD::collectData() {
938 >
939 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
940 >    Mat3x3d hmat = currentSnap_->getHmat();
941 >
942 >    seleMan_.setSelectionSet(evaluator_.evaluate());
943 >
944 >    int selei;
945 >    StuntDouble* sd;
946 >    int idx;
947 >
948 >    // alternative approach, track all molecules instead of only those
949 >    // selected for scaling/swapping:
950 >    /*
951 >    SimInfo::MoleculeIterator miter;
952 >    vector<StuntDouble*>::iterator iiter;
953 >    Molecule* mol;
954 >    StuntDouble* integrableObject;
955 >    for (mol = info_->beginMolecule(miter); mol != NULL;
956 >         mol = info_->nextMolecule(miter))
957 >      integrableObject is essentially sd
958 >        for (integrableObject = mol->beginIntegrableObject(iiter);
959 >             integrableObject != NULL;
960 >             integrableObject = mol->nextIntegrableObject(iiter))
961 >    */
962 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
963 >         sd = seleMan_.nextSelected(selei)) {
964 >      
965 >      idx = sd->getLocalIndex();
966 >      
967 >      Vector3d pos = sd->getPos();
968 >
969 >      // wrap the stuntdouble's position back into the box:
970 >      
971 >      if (usePeriodicBoundaryConditions_)
972 >        currentSnap_->wrapVector(pos);
973 >      
974 >      // which bin is this stuntdouble in?
975 >      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
976 >      
977 >      int binNo = int(rnemdLogWidth_ * (pos.z() / hmat(2,2) + 0.5)) %
978 >        rnemdLogWidth_;
979 >      // no symmetrization allowed due to arbitary rnemdLogWidth_ value
980 >      /*
981 >      if (rnemdLogWidth_ == midBin_ + 1)
982 >        if (binNo > midBin_)
983 >          binNo = nBins_ - binNo;
984 >      */
985 >      RealType mass = sd->getMass();
986 >      Vector3d vel = sd->getVel();
987 >      RealType value;
988 >      RealType xVal, yVal, zVal;
989 >
990 >      switch(rnemdType_) {
991 >      case rnemdKineticSwap :
992 >      case rnemdKineticScale :
993 >        
994 >        value = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
995 >        
996 >        valueCount_[binNo] += 3;
997 >        if (sd->isDirectional()) {
998 >          Vector3d angMom = sd->getJ();
999 >          Mat3x3d I = sd->getI();
1000 >          
1001 >          if (sd->isLinear()) {
1002 >            int i = sd->linearAxis();
1003 >            int j = (i + 1) % 3;
1004 >            int k = (i + 2) % 3;
1005 >            value += angMom[j] * angMom[j] / I(j, j) +
1006 >              angMom[k] * angMom[k] / I(k, k);
1007 >            
1008 >            valueCount_[binNo] +=2;
1009 >            
1010 >          } else {
1011 >            value += angMom[0]*angMom[0]/I(0, 0)
1012 >              + angMom[1]*angMom[1]/I(1, 1)
1013 >              + angMom[2]*angMom[2]/I(2, 2);
1014 >            valueCount_[binNo] +=3;
1015 >          }
1016 >        }
1017 >        value = value / PhysicalConstants::energyConvert / PhysicalConstants::kb;
1018 >        
1019 >        break;
1020 >      case rnemdPx :
1021 >      case rnemdPxScale :
1022 >        value = mass * vel[0];
1023 >        valueCount_[binNo]++;
1024 >        break;
1025 >      case rnemdPy :
1026 >      case rnemdPyScale :
1027 >        value = mass * vel[1];
1028 >        valueCount_[binNo]++;
1029 >        break;
1030 >      case rnemdPz :
1031 >      case rnemdPzScale :
1032 >        value = pos.z(); //temporarily for homogeneous systems ONLY
1033 >        valueCount_[binNo]++;
1034 >        break;
1035 >      case rnemdUnknown :
1036 >      default :
1037 >        value = 1.0;
1038 >        valueCount_[binNo]++;
1039 >        break;
1040 >      }
1041 >      valueHist_[binNo] += value;
1042 >
1043 >      if (output3DTemp_) {
1044 >        xVal = mass * vel.x() * vel.x() / PhysicalConstants::energyConvert
1045 >          / PhysicalConstants::kb;
1046 >        yVal = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert
1047 >          / PhysicalConstants::kb;
1048 >        zVal = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert
1049 >          / PhysicalConstants::kb;
1050 >        xTempHist_[binNo] += xVal;
1051 >        yTempHist_[binNo] += yVal;
1052 >        zTempHist_[binNo] += zVal;
1053 >        xyzTempCount_[binNo]++;
1054 >      }
1055 >    }
1056 >  }
1057 >
1058 >  void RNEMD::getStarted() {
1059 >    collectData();
1060 >    /* now should be able to output profile in step 0, but might not be useful
1061 >       Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1062 >       Stats& stat = currentSnap_->statData;
1063 >       stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1064 >    */
1065 >    getStatus();
1066 >  }
1067 >
1068 >  void RNEMD::getStatus() {
1069 >
1070 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1071 >    Stats& stat = currentSnap_->statData;
1072 >    RealType time = currentSnap_->getTime();
1073 >
1074 >    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1075 >    //or to be more meaningful, define another item as exchangeSum_ / time
1076 >    int j;
1077 >
1078 > #ifdef IS_MPI
1079 >
1080 >    // all processors have the same number of bins, and STL vectors pack their
1081 >    // arrays, so in theory, this should be safe:
1082 >
1083 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueHist_[0],
1084 >                              rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1085 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueCount_[0],
1086 >                              rnemdLogWidth_, MPI::INT, MPI::SUM);
1087 >    if (output3DTemp_) {
1088 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xTempHist_[0],
1089 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1090 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &yTempHist_[0],
1091 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1092 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &zTempHist_[0],
1093 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1094 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xyzTempCount_[0],
1095 >                                rnemdLogWidth_, MPI::INT, MPI::SUM);
1096 >    }
1097 >    // If we're the root node, should we print out the results
1098 >    int worldRank = MPI::COMM_WORLD.Get_rank();
1099 >    if (worldRank == 0) {
1100 > #endif
1101 >      rnemdLog_ << time;
1102 >      for (j = 0; j < rnemdLogWidth_; j++) {
1103 >        rnemdLog_ << "\t" << valueHist_[j] / (RealType)valueCount_[j];
1104 >      }
1105 >      rnemdLog_ << "\n";
1106 >      if (output3DTemp_) {
1107 >        xTempLog_ << time;      
1108 >        for (j = 0; j < rnemdLogWidth_; j++) {
1109 >          xTempLog_ << "\t" << xTempHist_[j] / (RealType)xyzTempCount_[j];
1110 >        }
1111 >        xTempLog_ << "\n";
1112 >        yTempLog_ << time;
1113 >        for (j = 0; j < rnemdLogWidth_; j++) {
1114 >          yTempLog_ << "\t" << yTempHist_[j] / (RealType)xyzTempCount_[j];
1115 >        }
1116 >        yTempLog_ << "\n";
1117 >        zTempLog_ << time;
1118 >        for (j = 0; j < rnemdLogWidth_; j++) {
1119 >          zTempLog_ << "\t" << zTempHist_[j] / (RealType)xyzTempCount_[j];
1120 >        }
1121 >        zTempLog_ << "\n";
1122 >      }
1123 > #ifdef IS_MPI
1124 >    }
1125 > #endif
1126 >    for (j = 0; j < rnemdLogWidth_; j++) {
1127 >      valueCount_[j] = 0;
1128 >      valueHist_[j] = 0.0;
1129 >    }
1130 >    if (output3DTemp_)
1131 >      for (j = 0; j < rnemdLogWidth_; j++) {
1132 >        xTempHist_[j] = 0.0;
1133 >        yTempHist_[j] = 0.0;
1134 >        zTempHist_[j] = 0.0;
1135 >        xyzTempCount_[j] = 0;
1136 >      }
1137 >  }
1138   }

Comparing trunk/src/integrators/RNEMD.cpp (property svn:keywords):
Revision 1330 by skuang, Thu Mar 19 21:03:36 2009 UTC vs.
Revision 1561 by gezelter, Wed May 11 19:04:40 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines