ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/integrators/RNEMD.cpp
(Generate patch)

Comparing trunk/src/integrators/RNEMD.cpp (file contents):
Revision 1330 by skuang, Thu Mar 19 21:03:36 2009 UTC vs.
Revision 1560 by skuang, Wed May 11 17:55:32 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42 + #include <cmath>
43   #include "integrators/RNEMD.hpp"
44 + #include "math/Vector3.hpp"
45   #include "math/SquareMatrix3.hpp"
46 + #include "math/Polynomial.hpp"
47   #include "primitives/Molecule.hpp"
48   #include "primitives/StuntDouble.hpp"
49 + #include "utils/PhysicalConstants.hpp"
50 + #include "utils/Tuple.hpp"
51  
52   #ifndef IS_MPI
53   #include "math/SeqRandNumGen.hpp"
# Line 50 | Line 55
55   #include "math/ParallelRandNumGen.hpp"
56   #endif
57  
58 < /* Remove me after testing*/
54 < /*
55 < #include <cstdio>
56 < #include <iostream>
57 < */
58 < /*End remove me*/
58 > #define HONKING_LARGE_VALUE 1.0e10
59  
60 < namespace oopse {
60 > namespace OpenMD {
61    
62 <  RNEMD::RNEMD(SimInfo* info) : info_(info) {
63 <    
62 >  RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
63 >
64 >    failTrialCount_ = 0;
65 >    failRootCount_ = 0;
66 >
67      int seedValue;
68      Globals * simParams = info->getSimParams();
69  
70 <    stringToEnumMap_["Kinetic"] = rnemdKinetic;
70 >    stringToEnumMap_["KineticSwap"] = rnemdKineticSwap;
71 >    stringToEnumMap_["KineticScale"] = rnemdKineticScale;
72 >    stringToEnumMap_["PxScale"] = rnemdPxScale;
73 >    stringToEnumMap_["PyScale"] = rnemdPyScale;
74 >    stringToEnumMap_["PzScale"] = rnemdPzScale;
75      stringToEnumMap_["Px"] = rnemdPx;
76      stringToEnumMap_["Py"] = rnemdPy;
77      stringToEnumMap_["Pz"] = rnemdPz;
78      stringToEnumMap_["Unknown"] = rnemdUnknown;
79  
80 <    const std::string st = simParams->getRNEMD_swapType();
80 >    rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
81 >    evaluator_.loadScriptString(rnemdObjectSelection_);
82 >    seleMan_.setSelectionSet(evaluator_.evaluate());
83  
84 +    // do some sanity checking
85 +
86 +    int selectionCount = seleMan_.getSelectionCount();
87 +    int nIntegrable = info->getNGlobalIntegrableObjects();
88 +
89 +    if (selectionCount > nIntegrable) {
90 +      sprintf(painCave.errMsg,
91 +              "RNEMD warning: The current RNEMD_objectSelection,\n"
92 +              "\t\t%s\n"
93 +              "\thas resulted in %d selected objects.  However,\n"
94 +              "\tthe total number of integrable objects in the system\n"
95 +              "\tis only %d.  This is almost certainly not what you want\n"
96 +              "\tto do.  A likely cause of this is forgetting the _RB_0\n"
97 +              "\tselector in the selection script!\n",
98 +              rnemdObjectSelection_.c_str(),
99 +              selectionCount, nIntegrable);
100 +      painCave.isFatal = 0;
101 +      simError();
102 +
103 +    }
104 +    
105 +    const std::string st = simParams->getRNEMD_exchangeType();
106 +
107      std::map<std::string, RNEMDTypeEnum>::iterator i;
108      i = stringToEnumMap_.find(st);
109 <    rnemdType_  = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
109 >    rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
110 >    if (rnemdType_ == rnemdUnknown) {
111 >      std::cerr << "WARNING! RNEMD Type Unknown!\n";
112 >    }
113  
114 +    output3DTemp_ = false;
115 +    if (simParams->haveRNEMD_outputDimensionalTemperature()) {
116 +      output3DTemp_ = simParams->getRNEMD_outputDimensionalTemperature();
117 +    }
118  
119 <    set_RNEMD_swapTime(simParams->getRNEMD_swapTime());
119 > #ifdef IS_MPI
120 >    if (worldRank == 0) {
121 > #endif
122 >
123 >      std::string rnemdFileName;
124 >      switch(rnemdType_) {
125 >      case rnemdKineticSwap :
126 >      case rnemdKineticScale :
127 >        rnemdFileName = "temperature.log";
128 >        break;
129 >      case rnemdPx :
130 >      case rnemdPxScale :
131 >      case rnemdPy :
132 >      case rnemdPyScale :
133 >        rnemdFileName = "momemtum.log";
134 >        break;
135 >      case rnemdPz :
136 >      case rnemdPzScale :
137 >      case rnemdUnknown :
138 >      default :
139 >        rnemdFileName = "rnemd.log";
140 >        break;
141 >      }
142 >      rnemdLog_.open(rnemdFileName.c_str());
143 >
144 >      std::string xTempFileName;
145 >      std::string yTempFileName;
146 >      std::string zTempFileName;
147 >      if (output3DTemp_) {
148 >        xTempFileName = "temperatureX.log";
149 >        yTempFileName = "temperatureY.log";
150 >        zTempFileName = "temperatureZ.log";
151 >        xTempLog_.open(xTempFileName.c_str());
152 >        yTempLog_.open(yTempFileName.c_str());
153 >        zTempLog_.open(zTempFileName.c_str());
154 >      }
155 >
156 > #ifdef IS_MPI
157 >    }
158 > #endif
159 >
160 >    set_RNEMD_exchange_time(simParams->getRNEMD_exchangeTime());
161      set_RNEMD_nBins(simParams->getRNEMD_nBins());
162 <    exchangeSum_ = 0.0;
163 <    
162 >    midBin_ = nBins_ / 2;
163 >    if (simParams->haveRNEMD_binShift()) {
164 >        if (simParams->getRNEMD_binShift()) {
165 >          zShift_ = 0.5 / (RealType)(nBins_);
166 >        } else {
167 >          zShift_ = 0.0;
168 >        }
169 >    } else {
170 >      zShift_ = 0.0;
171 >    }
172 >    //std::cerr << "we have zShift_ = " << zShift_ << "\n";
173 >    //shift slabs by half slab width, might be useful in heterogeneous systems
174 >    //set to 0.0 if not using it; can NOT be used in status output yet
175 >    if (simParams->haveRNEMD_logWidth()) {
176 >      set_RNEMD_logWidth(simParams->getRNEMD_logWidth());
177 >      /*arbitary rnemdLogWidth_ no checking
178 >      if (rnemdLogWidth_ != nBins_ && rnemdLogWidth_ != midBin_ + 1) {
179 >        std::cerr << "WARNING! RNEMD_logWidth has abnormal value!\n";
180 >        std::cerr << "Automaically set back to default.\n";
181 >        rnemdLogWidth_ = nBins_;
182 >        }*/
183 >    } else {
184 >      set_RNEMD_logWidth(nBins_);
185 >    }
186 >    valueHist_.resize(rnemdLogWidth_, 0.0);
187 >    valueCount_.resize(rnemdLogWidth_, 0);
188 >    xTempHist_.resize(rnemdLogWidth_, 0.0);
189 >    yTempHist_.resize(rnemdLogWidth_, 0.0);
190 >    zTempHist_.resize(rnemdLogWidth_, 0.0);
191 >    xyzTempCount_.resize(rnemdLogWidth_, 0);
192 >
193 >    set_RNEMD_exchange_total(0.0);
194 >    if (simParams->haveRNEMD_targetFlux()) {
195 >      set_RNEMD_target_flux(simParams->getRNEMD_targetFlux());
196 >    } else {
197 >      set_RNEMD_target_flux(0.0);
198 >    }
199 >
200   #ifndef IS_MPI
201      if (simParams->haveSeed()) {
202        seedValue = simParams->getSeed();
# Line 100 | Line 216 | namespace oopse {
216    
217    RNEMD::~RNEMD() {
218      delete randNumGen_;
219 +    
220 + #ifdef IS_MPI
221 +    if (worldRank == 0) {
222 + #endif
223 +      std::cerr << "total fail trials: " << failTrialCount_ << "\n";
224 +      rnemdLog_.close();
225 +      if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPyScale)
226 +        std::cerr<< "total root-checking warnings: " << failRootCount_ << "\n";
227 +      if (output3DTemp_) {
228 +        xTempLog_.close();
229 +        yTempLog_.close();
230 +        zTempLog_.close();
231 +      }
232 + #ifdef IS_MPI
233 +    }
234 + #endif
235    }
236  
237    void RNEMD::doSwap() {
238 <    std::cerr << "in RNEMD!\n";  
239 <    std::cerr << "nBins = " << nBins_ << "\n";
240 <    std::cerr << "swapTime = " << swapTime_ << "\n";
241 <    std::cerr << "exchangeSum = " << exchangeSum_ << "\n";
242 <    std::cerr << "swapType = " << rnemdType_ << "\n";
243 <  }  
238 >
239 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
240 >    Mat3x3d hmat = currentSnap_->getHmat();
241 >
242 >    seleMan_.setSelectionSet(evaluator_.evaluate());
243 >
244 >    int selei;
245 >    StuntDouble* sd;
246 >    int idx;
247 >
248 >    RealType min_val;
249 >    bool min_found = false;  
250 >    StuntDouble* min_sd;
251 >
252 >    RealType max_val;
253 >    bool max_found = false;
254 >    StuntDouble* max_sd;
255 >
256 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
257 >         sd = seleMan_.nextSelected(selei)) {
258 >
259 >      idx = sd->getLocalIndex();
260 >
261 >      Vector3d pos = sd->getPos();
262 >
263 >      // wrap the stuntdouble's position back into the box:
264 >
265 >      if (usePeriodicBoundaryConditions_)
266 >        currentSnap_->wrapVector(pos);
267 >
268 >      // which bin is this stuntdouble in?
269 >      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
270 >
271 >      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
272 >
273 >
274 >      // if we're in bin 0 or the middleBin
275 >      if (binNo == 0 || binNo == midBin_) {
276 >        
277 >        RealType mass = sd->getMass();
278 >        Vector3d vel = sd->getVel();
279 >        RealType value;
280 >
281 >        switch(rnemdType_) {
282 >        case rnemdKineticSwap :
283 >          
284 >          value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
285 >                          vel[2]*vel[2]);
286 >          /*
287 >          if (sd->isDirectional()) {
288 >            Vector3d angMom = sd->getJ();
289 >            Mat3x3d I = sd->getI();
290 >            
291 >            if (sd->isLinear()) {
292 >              int i = sd->linearAxis();
293 >              int j = (i + 1) % 3;
294 >              int k = (i + 2) % 3;
295 >              value += angMom[j] * angMom[j] / I(j, j) +
296 >                angMom[k] * angMom[k] / I(k, k);
297 >            } else {                        
298 >              value += angMom[0]*angMom[0]/I(0, 0)
299 >                + angMom[1]*angMom[1]/I(1, 1)
300 >                + angMom[2]*angMom[2]/I(2, 2);
301 >            }
302 >          } no exchange of angular momenta
303 >          */
304 >          //make exchangeSum_ comparable between swap & scale
305 >          //temporarily without using energyConvert
306 >          //value = value * 0.5 / PhysicalConstants::energyConvert;
307 >          value *= 0.5;
308 >          break;
309 >        case rnemdPx :
310 >          value = mass * vel[0];
311 >          break;
312 >        case rnemdPy :
313 >          value = mass * vel[1];
314 >          break;
315 >        case rnemdPz :
316 >          value = mass * vel[2];
317 >          break;
318 >        default :
319 >          break;
320 >        }
321 >        
322 >        if (binNo == 0) {
323 >          if (!min_found) {
324 >            min_val = value;
325 >            min_sd = sd;
326 >            min_found = true;
327 >          } else {
328 >            if (min_val > value) {
329 >              min_val = value;
330 >              min_sd = sd;
331 >            }
332 >          }
333 >        } else { //midBin_
334 >          if (!max_found) {
335 >            max_val = value;
336 >            max_sd = sd;
337 >            max_found = true;
338 >          } else {
339 >            if (max_val < value) {
340 >              max_val = value;
341 >              max_sd = sd;
342 >            }
343 >          }      
344 >        }
345 >      }
346 >    }
347 >
348 > #ifdef IS_MPI
349 >    int nProc, worldRank;
350 >
351 >    nProc = MPI::COMM_WORLD.Get_size();
352 >    worldRank = MPI::COMM_WORLD.Get_rank();
353 >
354 >    bool my_min_found = min_found;
355 >    bool my_max_found = max_found;
356 >
357 >    // Even if we didn't find a minimum, did someone else? debugging...
358 >    //MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found,
359 >    //                          1, MPI::BOOL, MPI::LAND);
360 >    MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
361 >    // Even if we didn't find a maximum, did someone else?
362 >    //MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found,
363 >    //                          1, MPI::BOOL, MPI::LAND);
364 >    MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
365 >    struct {
366 >      RealType val;
367 >      int rank;
368 >    } max_vals, min_vals;
369 >    
370 >    if (min_found) {
371 >      if (my_min_found)
372 >        min_vals.val = min_val;
373 >      else
374 >        min_vals.val = HONKING_LARGE_VALUE;
375 >      
376 >      min_vals.rank = worldRank;    
377 >      
378 >      // Who had the minimum?
379 >      MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
380 >                                1, MPI::REALTYPE_INT, MPI::MINLOC);
381 >      min_val = min_vals.val;
382 >    }
383 >      
384 >    if (max_found) {
385 >      if (my_max_found)
386 >        max_vals.val = max_val;
387 >      else
388 >        max_vals.val = -HONKING_LARGE_VALUE;
389 >      
390 >      max_vals.rank = worldRank;    
391 >      
392 >      // Who had the maximum?
393 >      MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
394 >                                1, MPI::REALTYPE_INT, MPI::MAXLOC);
395 >      max_val = max_vals.val;
396 >    }
397 > #endif
398 >
399 >    if (max_found && min_found) {
400 >      if (min_val < max_val) {
401 >
402 > #ifdef IS_MPI      
403 >        if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
404 >          // I have both maximum and minimum, so proceed like a single
405 >          // processor version:
406 > #endif
407 >          // objects to be swapped: velocity ONLY
408 >          Vector3d min_vel = min_sd->getVel();
409 >          Vector3d max_vel = max_sd->getVel();
410 >          RealType temp_vel;
411 >          
412 >          switch(rnemdType_) {
413 >          case rnemdKineticSwap :
414 >            min_sd->setVel(max_vel);
415 >            max_sd->setVel(min_vel);
416 >            /*
417 >            if (min_sd->isDirectional() && max_sd->isDirectional()) {
418 >              Vector3d min_angMom = min_sd->getJ();
419 >              Vector3d max_angMom = max_sd->getJ();
420 >              min_sd->setJ(max_angMom);
421 >              max_sd->setJ(min_angMom);
422 >            } no angular momentum exchange
423 >            */
424 >            break;
425 >          case rnemdPx :
426 >            temp_vel = min_vel.x();
427 >            min_vel.x() = max_vel.x();
428 >            max_vel.x() = temp_vel;
429 >            min_sd->setVel(min_vel);
430 >            max_sd->setVel(max_vel);
431 >            break;
432 >          case rnemdPy :
433 >            temp_vel = min_vel.y();
434 >            min_vel.y() = max_vel.y();
435 >            max_vel.y() = temp_vel;
436 >            min_sd->setVel(min_vel);
437 >            max_sd->setVel(max_vel);
438 >            break;
439 >          case rnemdPz :
440 >            temp_vel = min_vel.z();
441 >            min_vel.z() = max_vel.z();
442 >            max_vel.z() = temp_vel;
443 >            min_sd->setVel(min_vel);
444 >            max_sd->setVel(max_vel);
445 >            break;
446 >          default :
447 >            break;
448 >          }
449 > #ifdef IS_MPI
450 >          // the rest of the cases only apply in parallel simulations:
451 >        } else if (max_vals.rank == worldRank) {
452 >          // I had the max, but not the minimum
453 >          
454 >          Vector3d min_vel;
455 >          Vector3d max_vel = max_sd->getVel();
456 >          MPI::Status status;
457 >
458 >          // point-to-point swap of the velocity vector
459 >          MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE,
460 >                                   min_vals.rank, 0,
461 >                                   min_vel.getArrayPointer(), 3, MPI::REALTYPE,
462 >                                   min_vals.rank, 0, status);
463 >          
464 >          switch(rnemdType_) {
465 >          case rnemdKineticSwap :
466 >            max_sd->setVel(min_vel);
467 >            /*            
468 >            if (max_sd->isDirectional()) {
469 >              Vector3d min_angMom;
470 >              Vector3d max_angMom = max_sd->getJ();
471 >
472 >              // point-to-point swap of the angular momentum vector
473 >              MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
474 >                                       MPI::REALTYPE, min_vals.rank, 1,
475 >                                       min_angMom.getArrayPointer(), 3,
476 >                                       MPI::REALTYPE, min_vals.rank, 1,
477 >                                       status);
478 >
479 >              max_sd->setJ(min_angMom);
480 >            } no angular momentum exchange
481 >            */
482 >            break;
483 >          case rnemdPx :
484 >            max_vel.x() = min_vel.x();
485 >            max_sd->setVel(max_vel);
486 >            break;
487 >          case rnemdPy :
488 >            max_vel.y() = min_vel.y();
489 >            max_sd->setVel(max_vel);
490 >            break;
491 >          case rnemdPz :
492 >            max_vel.z() = min_vel.z();
493 >            max_sd->setVel(max_vel);
494 >            break;
495 >          default :
496 >            break;
497 >          }
498 >        } else if (min_vals.rank == worldRank) {
499 >          // I had the minimum but not the maximum:
500 >          
501 >          Vector3d max_vel;
502 >          Vector3d min_vel = min_sd->getVel();
503 >          MPI::Status status;
504 >          
505 >          // point-to-point swap of the velocity vector
506 >          MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE,
507 >                                   max_vals.rank, 0,
508 >                                   max_vel.getArrayPointer(), 3, MPI::REALTYPE,
509 >                                   max_vals.rank, 0, status);
510 >          
511 >          switch(rnemdType_) {
512 >          case rnemdKineticSwap :
513 >            min_sd->setVel(max_vel);
514 >            /*            
515 >            if (min_sd->isDirectional()) {
516 >              Vector3d min_angMom = min_sd->getJ();
517 >              Vector3d max_angMom;
518 >
519 >              // point-to-point swap of the angular momentum vector
520 >              MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
521 >                                       MPI::REALTYPE, max_vals.rank, 1,
522 >                                       max_angMom.getArrayPointer(), 3,
523 >                                       MPI::REALTYPE, max_vals.rank, 1,
524 >                                       status);
525 >
526 >              min_sd->setJ(max_angMom);
527 >            } no angular momentum exchange
528 >            */
529 >            break;
530 >          case rnemdPx :
531 >            min_vel.x() = max_vel.x();
532 >            min_sd->setVel(min_vel);
533 >            break;
534 >          case rnemdPy :
535 >            min_vel.y() = max_vel.y();
536 >            min_sd->setVel(min_vel);
537 >            break;
538 >          case rnemdPz :
539 >            min_vel.z() = max_vel.z();
540 >            min_sd->setVel(min_vel);
541 >            break;
542 >          default :
543 >            break;
544 >          }
545 >        }
546 > #endif
547 >        exchangeSum_ += max_val - min_val;
548 >      } else {
549 >        std::cerr << "exchange NOT performed!\nmin_val > max_val.\n";
550 >        failTrialCount_++;
551 >      }
552 >    } else {
553 >      std::cerr << "exchange NOT performed!\n";
554 >      std::cerr << "at least one of the two slabs empty.\n";
555 >      failTrialCount_++;
556 >    }
557 >    
558 >  }
559 >  
560 >  void RNEMD::doScale() {
561 >
562 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
563 >    Mat3x3d hmat = currentSnap_->getHmat();
564 >
565 >    seleMan_.setSelectionSet(evaluator_.evaluate());
566 >
567 >    int selei;
568 >    StuntDouble* sd;
569 >    int idx;
570 >
571 >    std::vector<StuntDouble*> hotBin, coldBin;
572 >
573 >    RealType Phx = 0.0;
574 >    RealType Phy = 0.0;
575 >    RealType Phz = 0.0;
576 >    RealType Khx = 0.0;
577 >    RealType Khy = 0.0;
578 >    RealType Khz = 0.0;
579 >    RealType Pcx = 0.0;
580 >    RealType Pcy = 0.0;
581 >    RealType Pcz = 0.0;
582 >    RealType Kcx = 0.0;
583 >    RealType Kcy = 0.0;
584 >    RealType Kcz = 0.0;
585 >
586 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
587 >         sd = seleMan_.nextSelected(selei)) {
588 >
589 >      idx = sd->getLocalIndex();
590 >
591 >      Vector3d pos = sd->getPos();
592 >
593 >      // wrap the stuntdouble's position back into the box:
594 >
595 >      if (usePeriodicBoundaryConditions_)
596 >        currentSnap_->wrapVector(pos);
597 >
598 >      // which bin is this stuntdouble in?
599 >      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
600 >
601 >      int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
602 >
603 >      // if we're in bin 0 or the middleBin
604 >      if (binNo == 0 || binNo == midBin_) {
605 >        
606 >        RealType mass = sd->getMass();
607 >        Vector3d vel = sd->getVel();
608 >      
609 >        if (binNo == 0) {
610 >          hotBin.push_back(sd);
611 >          Phx += mass * vel.x();
612 >          Phy += mass * vel.y();
613 >          Phz += mass * vel.z();
614 >          Khx += mass * vel.x() * vel.x();
615 >          Khy += mass * vel.y() * vel.y();
616 >          Khz += mass * vel.z() * vel.z();
617 >        } else { //midBin_
618 >          coldBin.push_back(sd);
619 >          Pcx += mass * vel.x();
620 >          Pcy += mass * vel.y();
621 >          Pcz += mass * vel.z();
622 >          Kcx += mass * vel.x() * vel.x();
623 >          Kcy += mass * vel.y() * vel.y();
624 >          Kcz += mass * vel.z() * vel.z();
625 >        }
626 >      }
627 >    }
628 >
629 >    Khx *= 0.5;
630 >    Khy *= 0.5;
631 >    Khz *= 0.5;
632 >    Kcx *= 0.5;
633 >    Kcy *= 0.5;
634 >    Kcz *= 0.5;
635 >
636 > #ifdef IS_MPI
637 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
638 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
639 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
640 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
641 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
642 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
643 >
644 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
645 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
646 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
647 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
648 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
649 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
650 > #endif
651 >
652 >    //use coldBin coeff's
653 >    RealType px = Pcx / Phx;
654 >    RealType py = Pcy / Phy;
655 >    RealType pz = Pcz / Phz;
656 >
657 >    RealType a000, a110, c0, a001, a111, b01, b11, c1, c;
658 >    switch(rnemdType_) {
659 >    case rnemdKineticScale :
660 >    /*used hotBin coeff's & only scale x & y dimensions
661 >      RealType px = Phx / Pcx;
662 >      RealType py = Phy / Pcy;
663 >      a110 = Khy;
664 >      c0 = - Khx - Khy - targetFlux_;
665 >      a000 = Khx;
666 >      a111 = Kcy * py * py
667 >      b11 = -2.0 * Kcy * py * (1.0 + py);
668 >      c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_;
669 >      b01 = -2.0 * Kcx * px * (1.0 + px);
670 >      a001 = Kcx * px * px;
671 >    */
672 >
673 >      //scale all three dimensions, let c_x = c_y
674 >      a000 = Kcx + Kcy;
675 >      a110 = Kcz;
676 >      c0 = targetFlux_ - Kcx - Kcy - Kcz;
677 >      a001 = Khx * px * px + Khy * py * py;
678 >      a111 = Khz * pz * pz;
679 >      b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
680 >      b11 = -2.0 * Khz * pz * (1.0 + pz);
681 >      c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
682 >         + Khz * pz * (2.0 + pz) - targetFlux_;
683 >      break;
684 >    case rnemdPxScale :
685 >      c = 1 - targetFlux_ / Pcx;
686 >      a000 = Kcy;
687 >      a110 = Kcz;
688 >      c0 = Kcx * c * c - Kcx - Kcy - Kcz;
689 >      a001 = py * py * Khy;
690 >      a111 = pz * pz * Khz;
691 >      b01 = -2.0 * Khy * py * (1.0 + py);
692 >      b11 = -2.0 * Khz * pz * (1.0 + pz);
693 >      c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
694 >         + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
695 >      break;
696 >    case rnemdPyScale :
697 >      c = 1 - targetFlux_ / Pcy;
698 >      a000 = Kcx;
699 >      a110 = Kcz;
700 >      c0 = Kcy * c * c - Kcx - Kcy - Kcz;
701 >      a001 = px * px * Khx;
702 >      a111 = pz * pz * Khz;
703 >      b01 = -2.0 * Khx * px * (1.0 + px);
704 >      b11 = -2.0 * Khz * pz * (1.0 + pz);
705 >      c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
706 >         + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
707 >      break;
708 >    case rnemdPzScale ://we don't really do this, do we?
709 >      c = 1 - targetFlux_ / Pcz;
710 >      a000 = Kcx;
711 >      a110 = Kcy;
712 >      c0 = Kcz * c * c - Kcx - Kcy - Kcz;
713 >      a001 = px * px * Khx;
714 >      a111 = py * py * Khy;
715 >      b01 = -2.0 * Khx * px * (1.0 + px);
716 >      b11 = -2.0 * Khy * py * (1.0 + py);
717 >      c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
718 >        + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
719 >      break;      
720 >    default :
721 >      break;
722 >    }
723 >
724 >    RealType v1 = a000 * a111 - a001 * a110;
725 >    RealType v2 = a000 * b01;
726 >    RealType v3 = a000 * b11;
727 >    RealType v4 = a000 * c1 - a001 * c0;
728 >    RealType v8 = a110 * b01;
729 >    RealType v10 = - b01 * c0;
730 >
731 >    RealType u0 = v2 * v10 - v4 * v4;
732 >    RealType u1 = -2.0 * v3 * v4;
733 >    RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
734 >    RealType u3 = -2.0 * v1 * v3;
735 >    RealType u4 = - v1 * v1;
736 >    //rescale coefficients
737 >    RealType maxAbs = fabs(u0);
738 >    if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
739 >    if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
740 >    if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
741 >    if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
742 >    u0 /= maxAbs;
743 >    u1 /= maxAbs;
744 >    u2 /= maxAbs;
745 >    u3 /= maxAbs;
746 >    u4 /= maxAbs;
747 >    //max_element(start, end) is also available.
748 >    Polynomial<RealType> poly; //same as DoublePolynomial poly;
749 >    poly.setCoefficient(4, u4);
750 >    poly.setCoefficient(3, u3);
751 >    poly.setCoefficient(2, u2);
752 >    poly.setCoefficient(1, u1);
753 >    poly.setCoefficient(0, u0);
754 >    std::vector<RealType> realRoots = poly.FindRealRoots();
755 >
756 >    std::vector<RealType>::iterator ri;
757 >    RealType r1, r2, alpha0;
758 >    std::vector<std::pair<RealType,RealType> > rps;
759 >    for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
760 >      r2 = *ri;
761 >      //check if FindRealRoots() give the right answer
762 >      if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
763 >        sprintf(painCave.errMsg,
764 >                "RNEMD Warning: polynomial solve seems to have an error!");
765 >        painCave.isFatal = 0;
766 >        simError();
767 >        failRootCount_++;
768 >      }
769 >      //might not be useful w/o rescaling coefficients
770 >      alpha0 = -c0 - a110 * r2 * r2;
771 >      if (alpha0 >= 0.0) {
772 >        r1 = sqrt(alpha0 / a000);
773 >        if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) < 1e-6)
774 >          { rps.push_back(std::make_pair(r1, r2)); }
775 >        if (r1 > 1e-6) { //r1 non-negative
776 >          r1 = -r1;
777 >          if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) <1e-6)
778 >            { rps.push_back(std::make_pair(r1, r2)); }
779 >        }
780 >      }
781 >    }
782 >    // Consider combininig together the solving pair part w/ the searching
783 >    // best solution part so that we don't need the pairs vector
784 >    if (!rps.empty()) {
785 >      RealType smallestDiff = HONKING_LARGE_VALUE;
786 >      RealType diff;
787 >      std::pair<RealType,RealType> bestPair = std::make_pair(1.0, 1.0);
788 >      std::vector<std::pair<RealType,RealType> >::iterator rpi;
789 >      for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
790 >        r1 = (*rpi).first;
791 >        r2 = (*rpi).second;
792 >        switch(rnemdType_) {
793 >        case rnemdKineticScale :
794 >          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
795 >            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
796 >            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
797 >          break;
798 >        case rnemdPxScale :
799 >          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
800 >            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
801 >          break;
802 >        case rnemdPyScale :
803 >          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
804 >            + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
805 >          break;
806 >        case rnemdPzScale :
807 >          diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
808 >            + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
809 >        default :
810 >          break;
811 >        }
812 >        if (diff < smallestDiff) {
813 >          smallestDiff = diff;
814 >          bestPair = *rpi;
815 >        }
816 >      }
817 > #ifdef IS_MPI
818 >      if (worldRank == 0) {
819 > #endif
820 >        std::cerr << "we choose r1 = " << bestPair.first
821 >                  << " and r2 = " << bestPair.second << "\n";
822 > #ifdef IS_MPI
823 >      }
824 > #endif
825 >
826 >      RealType x, y, z;
827 >        switch(rnemdType_) {
828 >        case rnemdKineticScale :
829 >          x = bestPair.first;
830 >          y = bestPair.first;
831 >          z = bestPair.second;
832 >          break;
833 >        case rnemdPxScale :
834 >          x = c;
835 >          y = bestPair.first;
836 >          z = bestPair.second;
837 >          break;
838 >        case rnemdPyScale :
839 >          x = bestPair.first;
840 >          y = c;
841 >          z = bestPair.second;
842 >          break;
843 >        case rnemdPzScale :
844 >          x = bestPair.first;
845 >          y = bestPair.second;
846 >          z = c;
847 >          break;          
848 >        default :
849 >          break;
850 >        }
851 >      std::vector<StuntDouble*>::iterator sdi;
852 >      Vector3d vel;
853 >      for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
854 >        vel = (*sdi)->getVel();
855 >        vel.x() *= x;
856 >        vel.y() *= y;
857 >        vel.z() *= z;
858 >        (*sdi)->setVel(vel);
859 >      }
860 >      //convert to hotBin coefficient
861 >      x = 1.0 + px * (1.0 - x);
862 >      y = 1.0 + py * (1.0 - y);
863 >      z = 1.0 + pz * (1.0 - z);
864 >      for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
865 >        vel = (*sdi)->getVel();
866 >        vel.x() *= x;
867 >        vel.y() *= y;
868 >        vel.z() *= z;
869 >        (*sdi)->setVel(vel);
870 >      }
871 >      exchangeSum_ += targetFlux_;
872 >      //we may want to check whether the exchange has been successful
873 >    } else {
874 >      std::cerr << "exchange NOT performed!\n";//MPI incompatible
875 >      failTrialCount_++;
876 >    }
877 >
878 >  }
879 >
880 >  void RNEMD::doRNEMD() {
881 >
882 >    switch(rnemdType_) {
883 >    case rnemdKineticScale :
884 >    case rnemdPxScale :
885 >    case rnemdPyScale :
886 >    case rnemdPzScale :
887 >      doScale();
888 >      break;
889 >    case rnemdKineticSwap :
890 >    case rnemdPx :
891 >    case rnemdPy :
892 >    case rnemdPz :
893 >      doSwap();
894 >      break;
895 >    case rnemdUnknown :
896 >    default :
897 >      break;
898 >    }
899 >  }
900 >
901 >  void RNEMD::collectData() {
902 >
903 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
904 >    Mat3x3d hmat = currentSnap_->getHmat();
905 >
906 >    seleMan_.setSelectionSet(evaluator_.evaluate());
907 >
908 >    int selei;
909 >    StuntDouble* sd;
910 >    int idx;
911 >
912 >    // alternative approach, track all molecules instead of only those selected for scaling/swapping
913 >    //SimInfo::MoleculeIterator miter;
914 >    //std::vector<StuntDouble*>::iterator iiter;
915 >    //Molecule* mol;
916 >    //StuntDouble* integrableObject;
917 >    //for (mol = info_->beginMolecule(miter); mol != NULL;
918 >    //     mol = info_->nextMolecule(miter))
919 >    // integrableObject is essentially sd
920 >    //for (integrableObject = mol->beginIntegrableObject(iiter);
921 >    //     integrableObject != NULL;
922 >    //     integrableObject = mol->nextIntegrableObject(iiter))
923 >    for (sd = seleMan_.beginSelected(selei); sd != NULL;
924 >         sd = seleMan_.nextSelected(selei)) {
925 >      
926 >      idx = sd->getLocalIndex();
927 >      
928 >      Vector3d pos = sd->getPos();
929 >
930 >      // wrap the stuntdouble's position back into the box:
931 >      
932 >      if (usePeriodicBoundaryConditions_)
933 >        currentSnap_->wrapVector(pos);
934 >      
935 >      // which bin is this stuntdouble in?
936 >      // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
937 >      
938 >      int binNo = int(rnemdLogWidth_ * (pos.z() / hmat(2,2) + 0.5)) %
939 >        rnemdLogWidth_;
940 >      /* no symmetrization allowed due to arbitary rnemdLogWidth_ value
941 >      if (rnemdLogWidth_ == midBin_ + 1)
942 >        if (binNo > midBin_)
943 >          binNo = nBins_ - binNo;
944 >      */
945 >      RealType mass = sd->getMass();
946 >      Vector3d vel = sd->getVel();
947 >      RealType value;
948 >      RealType xVal, yVal, zVal;
949 >
950 >      switch(rnemdType_) {
951 >      case rnemdKineticSwap :
952 >      case rnemdKineticScale :
953 >        
954 >        value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
955 >                        vel[2]*vel[2]);
956 >        
957 >        valueCount_[binNo] += 3;
958 >        if (sd->isDirectional()) {
959 >          Vector3d angMom = sd->getJ();
960 >          Mat3x3d I = sd->getI();
961 >          
962 >          if (sd->isLinear()) {
963 >            int i = sd->linearAxis();
964 >            int j = (i + 1) % 3;
965 >            int k = (i + 2) % 3;
966 >            value += angMom[j] * angMom[j] / I(j, j) +
967 >              angMom[k] * angMom[k] / I(k, k);
968 >
969 >            valueCount_[binNo] +=2;
970 >
971 >          } else {
972 >            value += angMom[0]*angMom[0]/I(0, 0)
973 >              + angMom[1]*angMom[1]/I(1, 1)
974 >              + angMom[2]*angMom[2]/I(2, 2);
975 >            valueCount_[binNo] +=3;
976 >          }
977 >        }
978 >        value = value / PhysicalConstants::energyConvert / PhysicalConstants::kb;
979 >
980 >        break;
981 >      case rnemdPx :
982 >      case rnemdPxScale :
983 >        value = mass * vel[0];
984 >        valueCount_[binNo]++;
985 >        break;
986 >      case rnemdPy :
987 >      case rnemdPyScale :
988 >        value = mass * vel[1];
989 >        valueCount_[binNo]++;
990 >        break;
991 >      case rnemdPz :
992 >      case rnemdPzScale :
993 >        value = pos.z(); //temporarily for homogeneous systems ONLY
994 >        valueCount_[binNo]++;
995 >        break;
996 >      case rnemdUnknown :
997 >      default :
998 >        value = 1.0;
999 >        valueCount_[binNo]++;
1000 >        break;
1001 >      }
1002 >      valueHist_[binNo] += value;
1003 >
1004 >      if (output3DTemp_) {
1005 >        xVal = mass * vel.x() * vel.x() / PhysicalConstants::energyConvert
1006 >          / PhysicalConstants::kb;
1007 >        yVal = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert
1008 >          / PhysicalConstants::kb;
1009 >        zVal = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert
1010 >          / PhysicalConstants::kb;
1011 >        xTempHist_[binNo] += xVal;
1012 >        yTempHist_[binNo] += yVal;
1013 >        zTempHist_[binNo] += zVal;
1014 >        xyzTempCount_[binNo]++;
1015 >      }
1016 >    }
1017 >  }
1018 >
1019 >  void RNEMD::getStarted() {
1020 >    collectData();
1021 >    /* now should be able to output profile in step 0, but might not be useful
1022 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1023 >    Stats& stat = currentSnap_->statData;
1024 >    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1025 >    */
1026 >    getStatus();
1027 >  }
1028 >
1029 >  void RNEMD::getStatus() {
1030 >
1031 >    Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1032 >    Stats& stat = currentSnap_->statData;
1033 >    RealType time = currentSnap_->getTime();
1034 >
1035 >    stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1036 >    //or to be more meaningful, define another item as exchangeSum_ / time
1037 >    int j;
1038 >
1039 > #ifdef IS_MPI
1040 >
1041 >    // all processors have the same number of bins, and STL vectors pack their
1042 >    // arrays, so in theory, this should be safe:
1043 >
1044 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueHist_[0],
1045 >                              rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1046 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueCount_[0],
1047 >                              rnemdLogWidth_, MPI::INT, MPI::SUM);
1048 >    if (output3DTemp_) {
1049 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xTempHist_[0],
1050 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1051 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &yTempHist_[0],
1052 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1053 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &zTempHist_[0],
1054 >                                rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1055 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xyzTempCount_[0],
1056 >                                rnemdLogWidth_, MPI::INT, MPI::SUM);
1057 >    }
1058 >    // If we're the root node, should we print out the results
1059 >    int worldRank = MPI::COMM_WORLD.Get_rank();
1060 >    if (worldRank == 0) {
1061 > #endif
1062 >      rnemdLog_ << time;
1063 >      for (j = 0; j < rnemdLogWidth_; j++) {
1064 >        rnemdLog_ << "\t" << valueHist_[j] / (RealType)valueCount_[j];
1065 >      }
1066 >      rnemdLog_ << "\n";
1067 >      if (output3DTemp_) {
1068 >        xTempLog_ << time;      
1069 >        for (j = 0; j < rnemdLogWidth_; j++) {
1070 >          xTempLog_ << "\t" << xTempHist_[j] / (RealType)xyzTempCount_[j];
1071 >        }
1072 >        xTempLog_ << "\n";
1073 >        yTempLog_ << time;
1074 >        for (j = 0; j < rnemdLogWidth_; j++) {
1075 >          yTempLog_ << "\t" << yTempHist_[j] / (RealType)xyzTempCount_[j];
1076 >        }
1077 >        yTempLog_ << "\n";
1078 >        zTempLog_ << time;
1079 >        for (j = 0; j < rnemdLogWidth_; j++) {
1080 >          zTempLog_ << "\t" << zTempHist_[j] / (RealType)xyzTempCount_[j];
1081 >        }
1082 >        zTempLog_ << "\n";
1083 >      }
1084 > #ifdef IS_MPI
1085 >    }
1086 > #endif
1087 >    for (j = 0; j < rnemdLogWidth_; j++) {
1088 >      valueCount_[j] = 0;
1089 >      valueHist_[j] = 0.0;
1090 >    }
1091 >    if (output3DTemp_)
1092 >      for (j = 0; j < rnemdLogWidth_; j++) {
1093 >        xTempHist_[j] = 0.0;
1094 >        yTempHist_[j] = 0.0;
1095 >        zTempHist_[j] = 0.0;
1096 >        xyzTempCount_[j] = 0;
1097 >      }
1098 >  }
1099   }

Comparing trunk/src/integrators/RNEMD.cpp (property svn:keywords):
Revision 1330 by skuang, Thu Mar 19 21:03:36 2009 UTC vs.
Revision 1560 by skuang, Wed May 11 17:55:32 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines