1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Acknowledgement of the program authors must be made in any |
10 |
* publication of scientific results based in part on use of the |
11 |
* program. An acceptable form of acknowledgement is citation of |
12 |
* the article in which the program was described (Matthew |
13 |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
* |
18 |
* 2. Redistributions of source code must retain the above copyright |
19 |
* notice, this list of conditions and the following disclaimer. |
20 |
* |
21 |
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
* notice, this list of conditions and the following disclaimer in the |
23 |
* documentation and/or other materials provided with the |
24 |
* distribution. |
25 |
* |
26 |
* This software is provided "AS IS," without a warranty of any |
27 |
* kind. All express or implied conditions, representations and |
28 |
* warranties, including any implied warranty of merchantability, |
29 |
* fitness for a particular purpose or non-infringement, are hereby |
30 |
* excluded. The University of Notre Dame and its licensors shall not |
31 |
* be liable for any damages suffered by licensee as a result of |
32 |
* using, modifying or distributing the software or its |
33 |
* derivatives. In no event will the University of Notre Dame or its |
34 |
* licensors be liable for any lost revenue, profit or data, or for |
35 |
* direct, indirect, special, consequential, incidental or punitive |
36 |
* damages, however caused and regardless of the theory of liability, |
37 |
* arising out of the use of or inability to use software, even if the |
38 |
* University of Notre Dame has been advised of the possibility of |
39 |
* such damages. |
40 |
*/ |
41 |
|
42 |
#include "integrators/RNEMD.hpp" |
43 |
#include "math/Vector3.hpp" |
44 |
#include "math/SquareMatrix3.hpp" |
45 |
#include "primitives/Molecule.hpp" |
46 |
#include "primitives/StuntDouble.hpp" |
47 |
#include "utils/OOPSEConstant.hpp" |
48 |
#include "utils/Tuple.hpp" |
49 |
|
50 |
#ifndef IS_MPI |
51 |
#include "math/SeqRandNumGen.hpp" |
52 |
#else |
53 |
#include "math/ParallelRandNumGen.hpp" |
54 |
#endif |
55 |
|
56 |
#define HONKING_LARGE_VALUE 1.0e10 |
57 |
|
58 |
namespace oopse { |
59 |
|
60 |
RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) { |
61 |
|
62 |
int seedValue; |
63 |
Globals * simParams = info->getSimParams(); |
64 |
|
65 |
stringToEnumMap_["Kinetic"] = rnemdKinetic; |
66 |
stringToEnumMap_["Px"] = rnemdPx; |
67 |
stringToEnumMap_["Py"] = rnemdPy; |
68 |
stringToEnumMap_["Pz"] = rnemdPz; |
69 |
stringToEnumMap_["Unknown"] = rnemdUnknown; |
70 |
|
71 |
rnemdObjectSelection_ = simParams->getRNEMD_objectSelection(); |
72 |
evaluator_.loadScriptString(rnemdObjectSelection_); |
73 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
74 |
|
75 |
|
76 |
// do some sanity checking |
77 |
|
78 |
int selectionCount = seleMan_.getSelectionCount(); |
79 |
int nIntegrable = info->getNGlobalIntegrableObjects(); |
80 |
|
81 |
if (selectionCount > nIntegrable) { |
82 |
sprintf(painCave.errMsg, |
83 |
"RNEMD warning: The current RNEMD_objectSelection,\n" |
84 |
"\t\t%s\n" |
85 |
"\thas resulted in %d selected objects. However,\n" |
86 |
"\tthe total number of integrable objects in the system\n" |
87 |
"\tis only %d. This is almost certainly not what you want\n" |
88 |
"\tto do. A likely cause of this is forgetting the _RB_0\n" |
89 |
"\tselector in the selection script!\n", |
90 |
rnemdObjectSelection_.c_str(), |
91 |
selectionCount, nIntegrable); |
92 |
painCave.isFatal = 0; |
93 |
simError(); |
94 |
|
95 |
} |
96 |
|
97 |
const std::string st = simParams->getRNEMD_swapType(); |
98 |
|
99 |
std::map<std::string, RNEMDTypeEnum>::iterator i; |
100 |
i = stringToEnumMap_.find(st); |
101 |
rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second; |
102 |
|
103 |
set_RNEMD_swapTime(simParams->getRNEMD_swapTime()); |
104 |
set_RNEMD_nBins(simParams->getRNEMD_nBins()); |
105 |
exchangeSum_ = 0.0; |
106 |
|
107 |
#ifndef IS_MPI |
108 |
if (simParams->haveSeed()) { |
109 |
seedValue = simParams->getSeed(); |
110 |
randNumGen_ = new SeqRandNumGen(seedValue); |
111 |
}else { |
112 |
randNumGen_ = new SeqRandNumGen(); |
113 |
} |
114 |
#else |
115 |
if (simParams->haveSeed()) { |
116 |
seedValue = simParams->getSeed(); |
117 |
randNumGen_ = new ParallelRandNumGen(seedValue); |
118 |
}else { |
119 |
randNumGen_ = new ParallelRandNumGen(); |
120 |
} |
121 |
#endif |
122 |
} |
123 |
|
124 |
RNEMD::~RNEMD() { |
125 |
delete randNumGen_; |
126 |
} |
127 |
|
128 |
void RNEMD::doSwap() { |
129 |
int midBin = nBins_ / 2; |
130 |
|
131 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
132 |
Mat3x3d hmat = currentSnap_->getHmat(); |
133 |
|
134 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
135 |
|
136 |
int selei; |
137 |
StuntDouble* sd; |
138 |
int idx; |
139 |
|
140 |
RealType min_val; |
141 |
bool min_found = false; |
142 |
StuntDouble* min_sd; |
143 |
|
144 |
RealType max_val; |
145 |
bool max_found = false; |
146 |
StuntDouble* max_sd; |
147 |
|
148 |
for (sd = seleMan_.beginSelected(selei); sd != NULL; |
149 |
sd = seleMan_.nextSelected(selei)) { |
150 |
|
151 |
idx = sd->getLocalIndex(); |
152 |
|
153 |
Vector3d pos = sd->getPos(); |
154 |
|
155 |
// wrap the stuntdouble's position back into the box: |
156 |
|
157 |
if (usePeriodicBoundaryConditions_) |
158 |
currentSnap_->wrapVector(pos); |
159 |
|
160 |
// which bin is this stuntdouble in? |
161 |
// wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)] |
162 |
|
163 |
int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_; |
164 |
|
165 |
|
166 |
// if we're in bin 0 or the middleBin |
167 |
if (binNo == 0 || binNo == midBin) { |
168 |
|
169 |
RealType mass = sd->getMass(); |
170 |
Vector3d vel = sd->getVel(); |
171 |
RealType value; |
172 |
|
173 |
switch(rnemdType_) { |
174 |
case rnemdKinetic : |
175 |
|
176 |
value = mass * (vel[0]*vel[0] + vel[1]*vel[1] + |
177 |
vel[2]*vel[2]); |
178 |
if (sd->isDirectional()) { |
179 |
Vector3d angMom = sd->getJ(); |
180 |
Mat3x3d I = sd->getI(); |
181 |
|
182 |
if (sd->isLinear()) { |
183 |
int i = sd->linearAxis(); |
184 |
int j = (i + 1) % 3; |
185 |
int k = (i + 2) % 3; |
186 |
value += angMom[j] * angMom[j] / I(j, j) + |
187 |
angMom[k] * angMom[k] / I(k, k); |
188 |
} else { |
189 |
value += angMom[0]*angMom[0]/I(0, 0) |
190 |
+ angMom[1]*angMom[1]/I(1, 1) |
191 |
+ angMom[2]*angMom[2]/I(2, 2); |
192 |
} |
193 |
} |
194 |
value = value * 0.5 / OOPSEConstant::energyConvert; |
195 |
break; |
196 |
case rnemdPx : |
197 |
value = mass * vel[0]; |
198 |
break; |
199 |
case rnemdPy : |
200 |
value = mass * vel[1]; |
201 |
break; |
202 |
case rnemdPz : |
203 |
value = mass * vel[2]; |
204 |
break; |
205 |
case rnemdUnknown : |
206 |
default : |
207 |
break; |
208 |
} |
209 |
|
210 |
if (binNo == 0) { |
211 |
if (!min_found) { |
212 |
min_val = value; |
213 |
min_sd = sd; |
214 |
min_found = true; |
215 |
} else { |
216 |
if (min_val > value) { |
217 |
min_val = value; |
218 |
min_sd = sd; |
219 |
} |
220 |
} |
221 |
} else { |
222 |
if (!max_found) { |
223 |
max_val = value; |
224 |
max_sd = sd; |
225 |
max_found = true; |
226 |
} else { |
227 |
if (max_val < value) { |
228 |
max_val = value; |
229 |
max_sd = sd; |
230 |
} |
231 |
} |
232 |
} |
233 |
} |
234 |
} |
235 |
|
236 |
#ifdef IS_MPI |
237 |
int nProc, worldRank; |
238 |
|
239 |
nProc = MPI::COMM_WORLD.Get_size(); |
240 |
worldRank = MPI::COMM_WORLD.Get_rank(); |
241 |
|
242 |
bool my_min_found = min_found; |
243 |
bool my_max_found = max_found; |
244 |
|
245 |
// Even if we didn't find a minimum, did someone else? |
246 |
MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, |
247 |
1, MPI::BOOL, MPI::LAND); |
248 |
|
249 |
// Even if we didn't find a maximum, did someone else? |
250 |
MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, |
251 |
1, MPI::BOOL, MPI::LAND); |
252 |
|
253 |
struct { |
254 |
RealType val; |
255 |
int rank; |
256 |
} max_vals, min_vals; |
257 |
|
258 |
if (min_found) { |
259 |
if (my_min_found) |
260 |
min_vals.val = min_val; |
261 |
else |
262 |
min_vals.val = HONKING_LARGE_VALUE; |
263 |
|
264 |
min_vals.rank = worldRank; |
265 |
|
266 |
// Who had the minimum? |
267 |
MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals, |
268 |
1, MPI::REALTYPE_INT, MPI::MINLOC); |
269 |
min_val = min_vals.val; |
270 |
} |
271 |
|
272 |
if (max_found) { |
273 |
if (my_max_found) |
274 |
max_vals.val = max_val; |
275 |
else |
276 |
max_vals.val = -HONKING_LARGE_VALUE; |
277 |
|
278 |
max_vals.rank = worldRank; |
279 |
|
280 |
// Who had the maximum? |
281 |
MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals, |
282 |
1, MPI::REALTYPE_INT, MPI::MAXLOC); |
283 |
max_val = max_vals.val; |
284 |
} |
285 |
#endif |
286 |
|
287 |
if (max_found && min_found) { |
288 |
if (min_val< max_val) { |
289 |
|
290 |
#ifdef IS_MPI |
291 |
if (max_vals.rank == worldRank && min_vals.rank == worldRank) { |
292 |
// I have both maximum and minimum, so proceed like a single |
293 |
// processor version: |
294 |
#endif |
295 |
// objects to be swapped: velocity & angular velocity |
296 |
Vector3d min_vel = min_sd->getVel(); |
297 |
Vector3d max_vel = max_sd->getVel(); |
298 |
RealType temp_vel; |
299 |
|
300 |
switch(rnemdType_) { |
301 |
case rnemdKinetic : |
302 |
min_sd->setVel(max_vel); |
303 |
max_sd->setVel(min_vel); |
304 |
if (min_sd->isDirectional() && max_sd->isDirectional()) { |
305 |
Vector3d min_angMom = min_sd->getJ(); |
306 |
Vector3d max_angMom = max_sd->getJ(); |
307 |
min_sd->setJ(max_angMom); |
308 |
max_sd->setJ(min_angMom); |
309 |
} |
310 |
break; |
311 |
case rnemdPx : |
312 |
temp_vel = min_vel.x(); |
313 |
min_vel.x() = max_vel.x(); |
314 |
max_vel.x() = temp_vel; |
315 |
min_sd->setVel(min_vel); |
316 |
max_sd->setVel(max_vel); |
317 |
break; |
318 |
case rnemdPy : |
319 |
temp_vel = min_vel.y(); |
320 |
min_vel.y() = max_vel.y(); |
321 |
max_vel.y() = temp_vel; |
322 |
min_sd->setVel(min_vel); |
323 |
max_sd->setVel(max_vel); |
324 |
break; |
325 |
case rnemdPz : |
326 |
temp_vel = min_vel.z(); |
327 |
min_vel.z() = max_vel.z(); |
328 |
max_vel.z() = temp_vel; |
329 |
min_sd->setVel(min_vel); |
330 |
max_sd->setVel(max_vel); |
331 |
break; |
332 |
case rnemdUnknown : |
333 |
default : |
334 |
break; |
335 |
} |
336 |
#ifdef IS_MPI |
337 |
// the rest of the cases only apply in parallel simulations: |
338 |
} else if (max_vals.rank == worldRank) { |
339 |
// I had the max, but not the minimum |
340 |
|
341 |
Vector3d min_vel; |
342 |
Vector3d max_vel = max_sd->getVel(); |
343 |
MPI::Status status; |
344 |
|
345 |
// point-to-point swap of the velocity vector |
346 |
MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE, |
347 |
min_vals.rank, 0, |
348 |
min_vel.getArrayPointer(), 3, MPI::REALTYPE, |
349 |
min_vals.rank, 0, status); |
350 |
|
351 |
switch(rnemdType_) { |
352 |
case rnemdKinetic : |
353 |
max_sd->setVel(min_vel); |
354 |
|
355 |
if (max_sd->isDirectional()) { |
356 |
Vector3d min_angMom; |
357 |
Vector3d max_angMom = max_sd->getJ(); |
358 |
|
359 |
// point-to-point swap of the angular momentum vector |
360 |
MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3, |
361 |
MPI::REALTYPE, min_vals.rank, 1, |
362 |
min_angMom.getArrayPointer(), 3, |
363 |
MPI::REALTYPE, min_vals.rank, 1, |
364 |
status); |
365 |
|
366 |
max_sd->setJ(min_angMom); |
367 |
} |
368 |
break; |
369 |
case rnemdPx : |
370 |
max_vel.x() = min_vel.x(); |
371 |
max_sd->setVel(max_vel); |
372 |
break; |
373 |
case rnemdPy : |
374 |
max_vel.y() = min_vel.y(); |
375 |
max_sd->setVel(max_vel); |
376 |
break; |
377 |
case rnemdPz : |
378 |
max_vel.z() = min_vel.z(); |
379 |
max_sd->setVel(max_vel); |
380 |
break; |
381 |
case rnemdUnknown : |
382 |
default : |
383 |
break; |
384 |
} |
385 |
} else if (min_vals.rank == worldRank) { |
386 |
// I had the minimum but not the maximum: |
387 |
|
388 |
Vector3d max_vel; |
389 |
Vector3d min_vel = min_sd->getVel(); |
390 |
MPI::Status status; |
391 |
|
392 |
// point-to-point swap of the velocity vector |
393 |
MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE, |
394 |
max_vals.rank, 0, |
395 |
max_vel.getArrayPointer(), 3, MPI::REALTYPE, |
396 |
max_vals.rank, 0, status); |
397 |
|
398 |
switch(rnemdType_) { |
399 |
case rnemdKinetic : |
400 |
min_sd->setVel(max_vel); |
401 |
|
402 |
if (min_sd->isDirectional()) { |
403 |
Vector3d min_angMom = min_sd->getJ(); |
404 |
Vector3d max_angMom; |
405 |
|
406 |
// point-to-point swap of the angular momentum vector |
407 |
MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3, |
408 |
MPI::REALTYPE, max_vals.rank, 1, |
409 |
max_angMom.getArrayPointer(), 3, |
410 |
MPI::REALTYPE, max_vals.rank, 1, |
411 |
status); |
412 |
|
413 |
min_sd->setJ(max_angMom); |
414 |
} |
415 |
break; |
416 |
case rnemdPx : |
417 |
min_vel.x() = max_vel.x(); |
418 |
min_sd->setVel(min_vel); |
419 |
break; |
420 |
case rnemdPy : |
421 |
min_vel.y() = max_vel.y(); |
422 |
min_sd->setVel(min_vel); |
423 |
break; |
424 |
case rnemdPz : |
425 |
min_vel.z() = max_vel.z(); |
426 |
min_sd->setVel(min_vel); |
427 |
break; |
428 |
case rnemdUnknown : |
429 |
default : |
430 |
break; |
431 |
} |
432 |
} |
433 |
#endif |
434 |
exchangeSum_ += max_val - min_val; |
435 |
} else { |
436 |
std::cerr << "exchange NOT performed.\nmin_val > max_val.\n"; |
437 |
} |
438 |
} else { |
439 |
std::cerr << "exchange NOT performed.\none of the two slabs empty.\n"; |
440 |
} |
441 |
|
442 |
} |
443 |
|
444 |
void RNEMD::getStatus() { |
445 |
|
446 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
447 |
Mat3x3d hmat = currentSnap_->getHmat(); |
448 |
Stats& stat = currentSnap_->statData; |
449 |
RealType time = currentSnap_->getTime(); |
450 |
|
451 |
stat[Stats::RNEMD_SWAP_TOTAL] = exchangeSum_; |
452 |
|
453 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
454 |
|
455 |
int selei; |
456 |
StuntDouble* sd; |
457 |
int idx; |
458 |
|
459 |
std::vector<RealType> valueHist(nBins_, 0.0); // keeps track of what's |
460 |
// being averaged |
461 |
std::vector<int> valueCount(nBins_, 0); // keeps track of the |
462 |
// number of degrees of |
463 |
// freedom being averaged |
464 |
|
465 |
for (sd = seleMan_.beginSelected(selei); sd != NULL; |
466 |
sd = seleMan_.nextSelected(selei)) { |
467 |
|
468 |
idx = sd->getLocalIndex(); |
469 |
|
470 |
Vector3d pos = sd->getPos(); |
471 |
|
472 |
// wrap the stuntdouble's position back into the box: |
473 |
|
474 |
if (usePeriodicBoundaryConditions_) |
475 |
currentSnap_->wrapVector(pos); |
476 |
|
477 |
// which bin is this stuntdouble in? |
478 |
// wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)] |
479 |
|
480 |
int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_; |
481 |
|
482 |
RealType mass = sd->getMass(); |
483 |
Vector3d vel = sd->getVel(); |
484 |
RealType value; |
485 |
|
486 |
switch(rnemdType_) { |
487 |
case rnemdKinetic : |
488 |
|
489 |
value = mass * (vel[0]*vel[0] + vel[1]*vel[1] + |
490 |
vel[2]*vel[2]); |
491 |
|
492 |
valueCount[binNo] += 3; |
493 |
if (sd->isDirectional()) { |
494 |
Vector3d angMom = sd->getJ(); |
495 |
Mat3x3d I = sd->getI(); |
496 |
|
497 |
if (sd->isLinear()) { |
498 |
int i = sd->linearAxis(); |
499 |
int j = (i + 1) % 3; |
500 |
int k = (i + 2) % 3; |
501 |
value += angMom[j] * angMom[j] / I(j, j) + |
502 |
angMom[k] * angMom[k] / I(k, k); |
503 |
|
504 |
valueCount[binNo] +=2; |
505 |
|
506 |
} else { |
507 |
value += angMom[0]*angMom[0]/I(0, 0) |
508 |
+ angMom[1]*angMom[1]/I(1, 1) |
509 |
+ angMom[2]*angMom[2]/I(2, 2); |
510 |
valueCount[binNo] +=3; |
511 |
} |
512 |
} |
513 |
value = value / OOPSEConstant::energyConvert / OOPSEConstant::kb; |
514 |
|
515 |
break; |
516 |
case rnemdPx : |
517 |
value = mass * vel[0]; |
518 |
valueCount[binNo]++; |
519 |
break; |
520 |
case rnemdPy : |
521 |
value = mass * vel[1]; |
522 |
valueCount[binNo]++; |
523 |
break; |
524 |
case rnemdPz : |
525 |
value = mass * vel[2]; |
526 |
valueCount[binNo]++; |
527 |
break; |
528 |
case rnemdUnknown : |
529 |
default : |
530 |
break; |
531 |
} |
532 |
valueHist[binNo] += value; |
533 |
} |
534 |
|
535 |
#ifdef IS_MPI |
536 |
|
537 |
// all processors have the same number of bins, and STL vectors pack their |
538 |
// arrays, so in theory, this should be safe: |
539 |
|
540 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueHist[0], |
541 |
nBins_, MPI::REALTYPE, MPI::SUM); |
542 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueCount[0], |
543 |
nBins_, MPI::INT, MPI::SUM); |
544 |
|
545 |
// If we're the root node, should we print out the results |
546 |
int worldRank = MPI::COMM_WORLD.Get_rank(); |
547 |
if (worldRank == 0) { |
548 |
#endif |
549 |
|
550 |
std::cout << time; |
551 |
for (int j = 0; j < nBins_; j++) |
552 |
std::cout << "\t" << valueHist[j] / (RealType)valueCount[j]; |
553 |
std::cout << "\n"; |
554 |
|
555 |
#ifdef IS_MPI |
556 |
} |
557 |
#endif |
558 |
} |
559 |
} |