ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/integrators/RNEMD.cpp
Revision: 1560
Committed: Wed May 11 17:55:32 2011 UTC (14 years ago) by skuang
File size: 35177 byte(s)
Log Message:
option binShift enables bin division shifts Lz/2N
option output3DTemp enables x,y,z dimensional temperature recording
disables angular momentum exchange for swapping algorithm
fixed a bug for swapping MPI code

File Contents

# User Rev Content
1 gezelter 1329 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 1329 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 1329 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40 gezelter 1329 */
41    
42 skuang 1368 #include <cmath>
43 gezelter 1329 #include "integrators/RNEMD.hpp"
44 gezelter 1332 #include "math/Vector3.hpp"
45 gezelter 1329 #include "math/SquareMatrix3.hpp"
46 skuang 1368 #include "math/Polynomial.hpp"
47 gezelter 1329 #include "primitives/Molecule.hpp"
48     #include "primitives/StuntDouble.hpp"
49 gezelter 1390 #include "utils/PhysicalConstants.hpp"
50 gezelter 1332 #include "utils/Tuple.hpp"
51 gezelter 1329
52     #ifndef IS_MPI
53     #include "math/SeqRandNumGen.hpp"
54     #else
55     #include "math/ParallelRandNumGen.hpp"
56     #endif
57    
58 gezelter 1350 #define HONKING_LARGE_VALUE 1.0e10
59 gezelter 1329
60 gezelter 1390 namespace OpenMD {
61 gezelter 1329
62 gezelter 1334 RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
63 skuang 1368
64     failTrialCount_ = 0;
65     failRootCount_ = 0;
66    
67 gezelter 1329 int seedValue;
68     Globals * simParams = info->getSimParams();
69 skuang 1330
70 skuang 1368 stringToEnumMap_["KineticSwap"] = rnemdKineticSwap;
71     stringToEnumMap_["KineticScale"] = rnemdKineticScale;
72     stringToEnumMap_["PxScale"] = rnemdPxScale;
73     stringToEnumMap_["PyScale"] = rnemdPyScale;
74     stringToEnumMap_["PzScale"] = rnemdPzScale;
75 skuang 1330 stringToEnumMap_["Px"] = rnemdPx;
76     stringToEnumMap_["Py"] = rnemdPy;
77     stringToEnumMap_["Pz"] = rnemdPz;
78     stringToEnumMap_["Unknown"] = rnemdUnknown;
79    
80 gezelter 1331 rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
81 skuang 1341 evaluator_.loadScriptString(rnemdObjectSelection_);
82     seleMan_.setSelectionSet(evaluator_.evaluate());
83 gezelter 1331
84 skuang 1341 // do some sanity checking
85    
86     int selectionCount = seleMan_.getSelectionCount();
87     int nIntegrable = info->getNGlobalIntegrableObjects();
88    
89     if (selectionCount > nIntegrable) {
90     sprintf(painCave.errMsg,
91     "RNEMD warning: The current RNEMD_objectSelection,\n"
92     "\t\t%s\n"
93     "\thas resulted in %d selected objects. However,\n"
94     "\tthe total number of integrable objects in the system\n"
95     "\tis only %d. This is almost certainly not what you want\n"
96     "\tto do. A likely cause of this is forgetting the _RB_0\n"
97     "\tselector in the selection script!\n",
98     rnemdObjectSelection_.c_str(),
99     selectionCount, nIntegrable);
100     painCave.isFatal = 0;
101     simError();
102    
103     }
104 gezelter 1331
105 skuang 1368 const std::string st = simParams->getRNEMD_exchangeType();
106 skuang 1330
107     std::map<std::string, RNEMDTypeEnum>::iterator i;
108     i = stringToEnumMap_.find(st);
109 skuang 1368 rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
110     if (rnemdType_ == rnemdUnknown) {
111     std::cerr << "WARNING! RNEMD Type Unknown!\n";
112     }
113 skuang 1330
114 skuang 1560 output3DTemp_ = false;
115     if (simParams->haveRNEMD_outputDimensionalTemperature()) {
116     output3DTemp_ = simParams->getRNEMD_outputDimensionalTemperature();
117     }
118    
119 skuang 1368 #ifdef IS_MPI
120     if (worldRank == 0) {
121     #endif
122    
123     std::string rnemdFileName;
124     switch(rnemdType_) {
125     case rnemdKineticSwap :
126     case rnemdKineticScale :
127     rnemdFileName = "temperature.log";
128     break;
129     case rnemdPx :
130     case rnemdPxScale :
131     case rnemdPy :
132     case rnemdPyScale :
133     rnemdFileName = "momemtum.log";
134     break;
135     case rnemdPz :
136     case rnemdPzScale :
137     case rnemdUnknown :
138     default :
139     rnemdFileName = "rnemd.log";
140     break;
141     }
142     rnemdLog_.open(rnemdFileName.c_str());
143    
144 skuang 1560 std::string xTempFileName;
145     std::string yTempFileName;
146     std::string zTempFileName;
147     if (output3DTemp_) {
148     xTempFileName = "temperatureX.log";
149     yTempFileName = "temperatureY.log";
150     zTempFileName = "temperatureZ.log";
151     xTempLog_.open(xTempFileName.c_str());
152     yTempLog_.open(yTempFileName.c_str());
153     zTempLog_.open(zTempFileName.c_str());
154     }
155    
156 skuang 1368 #ifdef IS_MPI
157     }
158     #endif
159    
160     set_RNEMD_exchange_time(simParams->getRNEMD_exchangeTime());
161 skuang 1330 set_RNEMD_nBins(simParams->getRNEMD_nBins());
162 skuang 1368 midBin_ = nBins_ / 2;
163 skuang 1560 if (simParams->haveRNEMD_binShift()) {
164     if (simParams->getRNEMD_binShift()) {
165     zShift_ = 0.5 / (RealType)(nBins_);
166     } else {
167     zShift_ = 0.0;
168     }
169     } else {
170     zShift_ = 0.0;
171     }
172     //std::cerr << "we have zShift_ = " << zShift_ << "\n";
173     //shift slabs by half slab width, might be useful in heterogeneous systems
174     //set to 0.0 if not using it; can NOT be used in status output yet
175 skuang 1368 if (simParams->haveRNEMD_logWidth()) {
176 skuang 1560 set_RNEMD_logWidth(simParams->getRNEMD_logWidth());
177     /*arbitary rnemdLogWidth_ no checking
178 gezelter 1396 if (rnemdLogWidth_ != nBins_ && rnemdLogWidth_ != midBin_ + 1) {
179 skuang 1368 std::cerr << "WARNING! RNEMD_logWidth has abnormal value!\n";
180     std::cerr << "Automaically set back to default.\n";
181     rnemdLogWidth_ = nBins_;
182 skuang 1560 }*/
183 skuang 1368 } else {
184 skuang 1560 set_RNEMD_logWidth(nBins_);
185 skuang 1368 }
186     valueHist_.resize(rnemdLogWidth_, 0.0);
187     valueCount_.resize(rnemdLogWidth_, 0);
188     xTempHist_.resize(rnemdLogWidth_, 0.0);
189     yTempHist_.resize(rnemdLogWidth_, 0.0);
190     zTempHist_.resize(rnemdLogWidth_, 0.0);
191 skuang 1560 xyzTempCount_.resize(rnemdLogWidth_, 0);
192 skuang 1338
193 skuang 1368 set_RNEMD_exchange_total(0.0);
194     if (simParams->haveRNEMD_targetFlux()) {
195     set_RNEMD_target_flux(simParams->getRNEMD_targetFlux());
196     } else {
197     set_RNEMD_target_flux(0.0);
198     }
199    
200 gezelter 1329 #ifndef IS_MPI
201     if (simParams->haveSeed()) {
202     seedValue = simParams->getSeed();
203     randNumGen_ = new SeqRandNumGen(seedValue);
204     }else {
205     randNumGen_ = new SeqRandNumGen();
206     }
207     #else
208     if (simParams->haveSeed()) {
209     seedValue = simParams->getSeed();
210     randNumGen_ = new ParallelRandNumGen(seedValue);
211     }else {
212     randNumGen_ = new ParallelRandNumGen();
213     }
214     #endif
215     }
216    
217     RNEMD::~RNEMD() {
218     delete randNumGen_;
219 gezelter 1396
220 skuang 1368 #ifdef IS_MPI
221     if (worldRank == 0) {
222     #endif
223 gezelter 1396 std::cerr << "total fail trials: " << failTrialCount_ << "\n";
224 skuang 1368 rnemdLog_.close();
225     if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPyScale)
226     std::cerr<< "total root-checking warnings: " << failRootCount_ << "\n";
227 skuang 1560 if (output3DTemp_) {
228 skuang 1368 xTempLog_.close();
229     yTempLog_.close();
230     zTempLog_.close();
231     }
232     #ifdef IS_MPI
233     }
234     #endif
235 gezelter 1329 }
236 skuang 1330
237 gezelter 1329 void RNEMD::doSwap() {
238 gezelter 1331
239 gezelter 1332 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
240     Mat3x3d hmat = currentSnap_->getHmat();
241    
242 gezelter 1331 seleMan_.setSelectionSet(evaluator_.evaluate());
243    
244 gezelter 1333 int selei;
245 gezelter 1331 StuntDouble* sd;
246 gezelter 1333 int idx;
247 gezelter 1331
248 skuang 1338 RealType min_val;
249     bool min_found = false;
250     StuntDouble* min_sd;
251    
252     RealType max_val;
253     bool max_found = false;
254     StuntDouble* max_sd;
255    
256 gezelter 1333 for (sd = seleMan_.beginSelected(selei); sd != NULL;
257     sd = seleMan_.nextSelected(selei)) {
258 gezelter 1332
259 gezelter 1333 idx = sd->getLocalIndex();
260    
261 gezelter 1331 Vector3d pos = sd->getPos();
262 gezelter 1332
263     // wrap the stuntdouble's position back into the box:
264    
265 gezelter 1331 if (usePeriodicBoundaryConditions_)
266 gezelter 1332 currentSnap_->wrapVector(pos);
267    
268     // which bin is this stuntdouble in?
269 gezelter 1334 // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
270 gezelter 1332
271 skuang 1560 int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
272 gezelter 1332
273 gezelter 1333
274 gezelter 1332 // if we're in bin 0 or the middleBin
275 skuang 1368 if (binNo == 0 || binNo == midBin_) {
276 gezelter 1332
277     RealType mass = sd->getMass();
278     Vector3d vel = sd->getVel();
279     RealType value;
280    
281     switch(rnemdType_) {
282 skuang 1368 case rnemdKineticSwap :
283 gezelter 1332
284     value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
285     vel[2]*vel[2]);
286 skuang 1560 /*
287 gezelter 1332 if (sd->isDirectional()) {
288     Vector3d angMom = sd->getJ();
289     Mat3x3d I = sd->getI();
290    
291     if (sd->isLinear()) {
292     int i = sd->linearAxis();
293     int j = (i + 1) % 3;
294     int k = (i + 2) % 3;
295     value += angMom[j] * angMom[j] / I(j, j) +
296     angMom[k] * angMom[k] / I(k, k);
297     } else {
298     value += angMom[0]*angMom[0]/I(0, 0)
299     + angMom[1]*angMom[1]/I(1, 1)
300     + angMom[2]*angMom[2]/I(2, 2);
301     }
302 skuang 1560 } no exchange of angular momenta
303     */
304 skuang 1368 //make exchangeSum_ comparable between swap & scale
305     //temporarily without using energyConvert
306 gezelter 1390 //value = value * 0.5 / PhysicalConstants::energyConvert;
307 skuang 1368 value *= 0.5;
308 gezelter 1332 break;
309     case rnemdPx :
310     value = mass * vel[0];
311     break;
312     case rnemdPy :
313     value = mass * vel[1];
314     break;
315     case rnemdPz :
316     value = mass * vel[2];
317     break;
318     default :
319     break;
320     }
321    
322 skuang 1338 if (binNo == 0) {
323     if (!min_found) {
324     min_val = value;
325     min_sd = sd;
326     min_found = true;
327     } else {
328     if (min_val > value) {
329     min_val = value;
330     min_sd = sd;
331     }
332     }
333 skuang 1368 } else { //midBin_
334 skuang 1338 if (!max_found) {
335     max_val = value;
336     max_sd = sd;
337     max_found = true;
338     } else {
339     if (max_val < value) {
340     max_val = value;
341     max_sd = sd;
342     }
343     }
344     }
345 gezelter 1332 }
346 gezelter 1331 }
347 skuang 1341
348 gezelter 1350 #ifdef IS_MPI
349     int nProc, worldRank;
350 skuang 1338
351 gezelter 1350 nProc = MPI::COMM_WORLD.Get_size();
352     worldRank = MPI::COMM_WORLD.Get_rank();
353    
354     bool my_min_found = min_found;
355     bool my_max_found = max_found;
356    
357 skuang 1560 // Even if we didn't find a minimum, did someone else? debugging...
358     //MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found,
359     // 1, MPI::BOOL, MPI::LAND);
360     MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
361 gezelter 1350 // Even if we didn't find a maximum, did someone else?
362 skuang 1560 //MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found,
363     // 1, MPI::BOOL, MPI::LAND);
364     MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
365 gezelter 1350 struct {
366     RealType val;
367     int rank;
368     } max_vals, min_vals;
369    
370     if (min_found) {
371     if (my_min_found)
372     min_vals.val = min_val;
373     else
374     min_vals.val = HONKING_LARGE_VALUE;
375    
376     min_vals.rank = worldRank;
377    
378     // Who had the minimum?
379     MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
380     1, MPI::REALTYPE_INT, MPI::MINLOC);
381     min_val = min_vals.val;
382     }
383    
384     if (max_found) {
385     if (my_max_found)
386     max_vals.val = max_val;
387     else
388     max_vals.val = -HONKING_LARGE_VALUE;
389    
390     max_vals.rank = worldRank;
391    
392     // Who had the maximum?
393     MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
394     1, MPI::REALTYPE_INT, MPI::MAXLOC);
395     max_val = max_vals.val;
396     }
397     #endif
398    
399 skuang 1338 if (max_found && min_found) {
400 skuang 1560 if (min_val < max_val) {
401 skuang 1341
402 gezelter 1350 #ifdef IS_MPI
403     if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
404     // I have both maximum and minimum, so proceed like a single
405     // processor version:
406     #endif
407 skuang 1560 // objects to be swapped: velocity ONLY
408 gezelter 1350 Vector3d min_vel = min_sd->getVel();
409     Vector3d max_vel = max_sd->getVel();
410     RealType temp_vel;
411    
412     switch(rnemdType_) {
413 skuang 1368 case rnemdKineticSwap :
414 gezelter 1350 min_sd->setVel(max_vel);
415     max_sd->setVel(min_vel);
416 skuang 1560 /*
417 gezelter 1350 if (min_sd->isDirectional() && max_sd->isDirectional()) {
418     Vector3d min_angMom = min_sd->getJ();
419     Vector3d max_angMom = max_sd->getJ();
420     min_sd->setJ(max_angMom);
421     max_sd->setJ(min_angMom);
422 skuang 1560 } no angular momentum exchange
423     */
424 gezelter 1350 break;
425     case rnemdPx :
426     temp_vel = min_vel.x();
427     min_vel.x() = max_vel.x();
428     max_vel.x() = temp_vel;
429     min_sd->setVel(min_vel);
430     max_sd->setVel(max_vel);
431     break;
432     case rnemdPy :
433     temp_vel = min_vel.y();
434     min_vel.y() = max_vel.y();
435     max_vel.y() = temp_vel;
436     min_sd->setVel(min_vel);
437     max_sd->setVel(max_vel);
438     break;
439     case rnemdPz :
440     temp_vel = min_vel.z();
441     min_vel.z() = max_vel.z();
442     max_vel.z() = temp_vel;
443     min_sd->setVel(min_vel);
444     max_sd->setVel(max_vel);
445     break;
446     default :
447     break;
448     }
449     #ifdef IS_MPI
450     // the rest of the cases only apply in parallel simulations:
451     } else if (max_vals.rank == worldRank) {
452     // I had the max, but not the minimum
453    
454     Vector3d min_vel;
455     Vector3d max_vel = max_sd->getVel();
456     MPI::Status status;
457 skuang 1341
458 gezelter 1350 // point-to-point swap of the velocity vector
459     MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE,
460     min_vals.rank, 0,
461     min_vel.getArrayPointer(), 3, MPI::REALTYPE,
462     min_vals.rank, 0, status);
463    
464     switch(rnemdType_) {
465 skuang 1368 case rnemdKineticSwap :
466 gezelter 1350 max_sd->setVel(min_vel);
467 skuang 1560 /*
468 gezelter 1350 if (max_sd->isDirectional()) {
469     Vector3d min_angMom;
470     Vector3d max_angMom = max_sd->getJ();
471 skuang 1341
472 gezelter 1350 // point-to-point swap of the angular momentum vector
473     MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
474     MPI::REALTYPE, min_vals.rank, 1,
475     min_angMom.getArrayPointer(), 3,
476     MPI::REALTYPE, min_vals.rank, 1,
477     status);
478    
479     max_sd->setJ(min_angMom);
480 skuang 1560 } no angular momentum exchange
481     */
482 gezelter 1350 break;
483     case rnemdPx :
484     max_vel.x() = min_vel.x();
485     max_sd->setVel(max_vel);
486     break;
487     case rnemdPy :
488     max_vel.y() = min_vel.y();
489     max_sd->setVel(max_vel);
490     break;
491     case rnemdPz :
492     max_vel.z() = min_vel.z();
493     max_sd->setVel(max_vel);
494     break;
495     default :
496     break;
497 skuang 1341 }
498 gezelter 1350 } else if (min_vals.rank == worldRank) {
499     // I had the minimum but not the maximum:
500    
501     Vector3d max_vel;
502     Vector3d min_vel = min_sd->getVel();
503     MPI::Status status;
504    
505     // point-to-point swap of the velocity vector
506     MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE,
507     max_vals.rank, 0,
508     max_vel.getArrayPointer(), 3, MPI::REALTYPE,
509     max_vals.rank, 0, status);
510    
511     switch(rnemdType_) {
512 skuang 1368 case rnemdKineticSwap :
513 gezelter 1350 min_sd->setVel(max_vel);
514 skuang 1560 /*
515 gezelter 1350 if (min_sd->isDirectional()) {
516     Vector3d min_angMom = min_sd->getJ();
517     Vector3d max_angMom;
518    
519     // point-to-point swap of the angular momentum vector
520     MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
521     MPI::REALTYPE, max_vals.rank, 1,
522     max_angMom.getArrayPointer(), 3,
523     MPI::REALTYPE, max_vals.rank, 1,
524     status);
525    
526     min_sd->setJ(max_angMom);
527 skuang 1560 } no angular momentum exchange
528     */
529 gezelter 1350 break;
530     case rnemdPx :
531     min_vel.x() = max_vel.x();
532     min_sd->setVel(min_vel);
533     break;
534     case rnemdPy :
535     min_vel.y() = max_vel.y();
536     min_sd->setVel(min_vel);
537     break;
538     case rnemdPz :
539     min_vel.z() = max_vel.z();
540     min_sd->setVel(min_vel);
541     break;
542     default :
543     break;
544     }
545     }
546     #endif
547     exchangeSum_ += max_val - min_val;
548 skuang 1338 } else {
549 skuang 1368 std::cerr << "exchange NOT performed!\nmin_val > max_val.\n";
550     failTrialCount_++;
551 skuang 1338 }
552     } else {
553 skuang 1368 std::cerr << "exchange NOT performed!\n";
554     std::cerr << "at least one of the two slabs empty.\n";
555     failTrialCount_++;
556 skuang 1338 }
557 gezelter 1350
558 skuang 1338 }
559 gezelter 1350
560 skuang 1368 void RNEMD::doScale() {
561 skuang 1338
562     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
563     Mat3x3d hmat = currentSnap_->getHmat();
564    
565     seleMan_.setSelectionSet(evaluator_.evaluate());
566    
567     int selei;
568     StuntDouble* sd;
569     int idx;
570    
571 skuang 1368 std::vector<StuntDouble*> hotBin, coldBin;
572 gezelter 1350
573 skuang 1368 RealType Phx = 0.0;
574     RealType Phy = 0.0;
575     RealType Phz = 0.0;
576     RealType Khx = 0.0;
577     RealType Khy = 0.0;
578     RealType Khz = 0.0;
579     RealType Pcx = 0.0;
580     RealType Pcy = 0.0;
581     RealType Pcz = 0.0;
582     RealType Kcx = 0.0;
583     RealType Kcy = 0.0;
584     RealType Kcz = 0.0;
585    
586 skuang 1338 for (sd = seleMan_.beginSelected(selei); sd != NULL;
587     sd = seleMan_.nextSelected(selei)) {
588 skuang 1368
589     idx = sd->getLocalIndex();
590    
591     Vector3d pos = sd->getPos();
592    
593     // wrap the stuntdouble's position back into the box:
594    
595     if (usePeriodicBoundaryConditions_)
596     currentSnap_->wrapVector(pos);
597    
598     // which bin is this stuntdouble in?
599     // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
600    
601 skuang 1560 int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
602 skuang 1368
603     // if we're in bin 0 or the middleBin
604     if (binNo == 0 || binNo == midBin_) {
605    
606     RealType mass = sd->getMass();
607     Vector3d vel = sd->getVel();
608    
609     if (binNo == 0) {
610     hotBin.push_back(sd);
611     Phx += mass * vel.x();
612     Phy += mass * vel.y();
613     Phz += mass * vel.z();
614     Khx += mass * vel.x() * vel.x();
615     Khy += mass * vel.y() * vel.y();
616     Khz += mass * vel.z() * vel.z();
617     } else { //midBin_
618     coldBin.push_back(sd);
619     Pcx += mass * vel.x();
620     Pcy += mass * vel.y();
621     Pcz += mass * vel.z();
622     Kcx += mass * vel.x() * vel.x();
623     Kcy += mass * vel.y() * vel.y();
624     Kcz += mass * vel.z() * vel.z();
625     }
626     }
627     }
628    
629     Khx *= 0.5;
630     Khy *= 0.5;
631     Khz *= 0.5;
632     Kcx *= 0.5;
633     Kcy *= 0.5;
634     Kcz *= 0.5;
635    
636     #ifdef IS_MPI
637     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
638     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
639     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
640     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
641     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
642     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
643    
644     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
645     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
646     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
647     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
648     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
649     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
650     #endif
651    
652     //use coldBin coeff's
653     RealType px = Pcx / Phx;
654     RealType py = Pcy / Phy;
655     RealType pz = Pcz / Phz;
656    
657     RealType a000, a110, c0, a001, a111, b01, b11, c1, c;
658     switch(rnemdType_) {
659     case rnemdKineticScale :
660     /*used hotBin coeff's & only scale x & y dimensions
661     RealType px = Phx / Pcx;
662     RealType py = Phy / Pcy;
663     a110 = Khy;
664     c0 = - Khx - Khy - targetFlux_;
665     a000 = Khx;
666     a111 = Kcy * py * py
667     b11 = -2.0 * Kcy * py * (1.0 + py);
668     c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_;
669     b01 = -2.0 * Kcx * px * (1.0 + px);
670     a001 = Kcx * px * px;
671     */
672    
673 gezelter 1396 //scale all three dimensions, let c_x = c_y
674 skuang 1368 a000 = Kcx + Kcy;
675     a110 = Kcz;
676     c0 = targetFlux_ - Kcx - Kcy - Kcz;
677     a001 = Khx * px * px + Khy * py * py;
678     a111 = Khz * pz * pz;
679     b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
680     b11 = -2.0 * Khz * pz * (1.0 + pz);
681     c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
682     + Khz * pz * (2.0 + pz) - targetFlux_;
683     break;
684     case rnemdPxScale :
685     c = 1 - targetFlux_ / Pcx;
686     a000 = Kcy;
687     a110 = Kcz;
688     c0 = Kcx * c * c - Kcx - Kcy - Kcz;
689     a001 = py * py * Khy;
690     a111 = pz * pz * Khz;
691     b01 = -2.0 * Khy * py * (1.0 + py);
692     b11 = -2.0 * Khz * pz * (1.0 + pz);
693     c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
694     + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
695     break;
696     case rnemdPyScale :
697     c = 1 - targetFlux_ / Pcy;
698     a000 = Kcx;
699     a110 = Kcz;
700     c0 = Kcy * c * c - Kcx - Kcy - Kcz;
701     a001 = px * px * Khx;
702     a111 = pz * pz * Khz;
703     b01 = -2.0 * Khx * px * (1.0 + px);
704     b11 = -2.0 * Khz * pz * (1.0 + pz);
705     c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
706     + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
707     break;
708     case rnemdPzScale ://we don't really do this, do we?
709 gezelter 1396 c = 1 - targetFlux_ / Pcz;
710     a000 = Kcx;
711     a110 = Kcy;
712     c0 = Kcz * c * c - Kcx - Kcy - Kcz;
713     a001 = px * px * Khx;
714     a111 = py * py * Khy;
715     b01 = -2.0 * Khx * px * (1.0 + px);
716     b11 = -2.0 * Khy * py * (1.0 + py);
717     c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
718     + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
719     break;
720 skuang 1368 default :
721     break;
722     }
723    
724     RealType v1 = a000 * a111 - a001 * a110;
725     RealType v2 = a000 * b01;
726     RealType v3 = a000 * b11;
727     RealType v4 = a000 * c1 - a001 * c0;
728     RealType v8 = a110 * b01;
729     RealType v10 = - b01 * c0;
730    
731     RealType u0 = v2 * v10 - v4 * v4;
732     RealType u1 = -2.0 * v3 * v4;
733     RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
734     RealType u3 = -2.0 * v1 * v3;
735     RealType u4 = - v1 * v1;
736     //rescale coefficients
737     RealType maxAbs = fabs(u0);
738     if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
739     if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
740     if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
741     if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
742     u0 /= maxAbs;
743     u1 /= maxAbs;
744     u2 /= maxAbs;
745     u3 /= maxAbs;
746     u4 /= maxAbs;
747     //max_element(start, end) is also available.
748     Polynomial<RealType> poly; //same as DoublePolynomial poly;
749     poly.setCoefficient(4, u4);
750     poly.setCoefficient(3, u3);
751     poly.setCoefficient(2, u2);
752     poly.setCoefficient(1, u1);
753     poly.setCoefficient(0, u0);
754     std::vector<RealType> realRoots = poly.FindRealRoots();
755    
756     std::vector<RealType>::iterator ri;
757     RealType r1, r2, alpha0;
758     std::vector<std::pair<RealType,RealType> > rps;
759     for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
760     r2 = *ri;
761     //check if FindRealRoots() give the right answer
762     if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
763 gezelter 1396 sprintf(painCave.errMsg,
764     "RNEMD Warning: polynomial solve seems to have an error!");
765     painCave.isFatal = 0;
766     simError();
767 skuang 1368 failRootCount_++;
768     }
769     //might not be useful w/o rescaling coefficients
770     alpha0 = -c0 - a110 * r2 * r2;
771     if (alpha0 >= 0.0) {
772     r1 = sqrt(alpha0 / a000);
773     if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) < 1e-6)
774     { rps.push_back(std::make_pair(r1, r2)); }
775     if (r1 > 1e-6) { //r1 non-negative
776     r1 = -r1;
777     if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) <1e-6)
778     { rps.push_back(std::make_pair(r1, r2)); }
779     }
780     }
781     }
782     // Consider combininig together the solving pair part w/ the searching
783     // best solution part so that we don't need the pairs vector
784     if (!rps.empty()) {
785     RealType smallestDiff = HONKING_LARGE_VALUE;
786     RealType diff;
787     std::pair<RealType,RealType> bestPair = std::make_pair(1.0, 1.0);
788     std::vector<std::pair<RealType,RealType> >::iterator rpi;
789     for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
790     r1 = (*rpi).first;
791     r2 = (*rpi).second;
792     switch(rnemdType_) {
793     case rnemdKineticScale :
794     diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
795     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
796     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
797     break;
798     case rnemdPxScale :
799     diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
800     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
801     break;
802     case rnemdPyScale :
803     diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
804     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
805     break;
806     case rnemdPzScale :
807 skuang 1560 diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
808     + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
809 skuang 1368 default :
810     break;
811     }
812     if (diff < smallestDiff) {
813     smallestDiff = diff;
814     bestPair = *rpi;
815     }
816     }
817     #ifdef IS_MPI
818     if (worldRank == 0) {
819     #endif
820     std::cerr << "we choose r1 = " << bestPair.first
821     << " and r2 = " << bestPair.second << "\n";
822     #ifdef IS_MPI
823     }
824     #endif
825    
826     RealType x, y, z;
827     switch(rnemdType_) {
828     case rnemdKineticScale :
829     x = bestPair.first;
830     y = bestPair.first;
831     z = bestPair.second;
832     break;
833     case rnemdPxScale :
834     x = c;
835     y = bestPair.first;
836     z = bestPair.second;
837     break;
838     case rnemdPyScale :
839     x = bestPair.first;
840     y = c;
841     z = bestPair.second;
842     break;
843     case rnemdPzScale :
844 gezelter 1396 x = bestPair.first;
845     y = bestPair.second;
846     z = c;
847     break;
848 skuang 1368 default :
849     break;
850     }
851     std::vector<StuntDouble*>::iterator sdi;
852     Vector3d vel;
853     for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
854     vel = (*sdi)->getVel();
855     vel.x() *= x;
856     vel.y() *= y;
857     vel.z() *= z;
858     (*sdi)->setVel(vel);
859     }
860     //convert to hotBin coefficient
861     x = 1.0 + px * (1.0 - x);
862     y = 1.0 + py * (1.0 - y);
863     z = 1.0 + pz * (1.0 - z);
864     for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
865     vel = (*sdi)->getVel();
866     vel.x() *= x;
867     vel.y() *= y;
868     vel.z() *= z;
869     (*sdi)->setVel(vel);
870     }
871     exchangeSum_ += targetFlux_;
872     //we may want to check whether the exchange has been successful
873     } else {
874 gezelter 1396 std::cerr << "exchange NOT performed!\n";//MPI incompatible
875 skuang 1368 failTrialCount_++;
876     }
877    
878     }
879    
880     void RNEMD::doRNEMD() {
881    
882     switch(rnemdType_) {
883     case rnemdKineticScale :
884     case rnemdPxScale :
885     case rnemdPyScale :
886     case rnemdPzScale :
887     doScale();
888     break;
889     case rnemdKineticSwap :
890     case rnemdPx :
891     case rnemdPy :
892     case rnemdPz :
893     doSwap();
894     break;
895     case rnemdUnknown :
896     default :
897     break;
898     }
899     }
900    
901     void RNEMD::collectData() {
902    
903     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
904     Mat3x3d hmat = currentSnap_->getHmat();
905    
906     seleMan_.setSelectionSet(evaluator_.evaluate());
907    
908     int selei;
909     StuntDouble* sd;
910     int idx;
911    
912 skuang 1560 // alternative approach, track all molecules instead of only those selected for scaling/swapping
913     //SimInfo::MoleculeIterator miter;
914     //std::vector<StuntDouble*>::iterator iiter;
915     //Molecule* mol;
916     //StuntDouble* integrableObject;
917     //for (mol = info_->beginMolecule(miter); mol != NULL;
918     // mol = info_->nextMolecule(miter))
919     // integrableObject is essentially sd
920     //for (integrableObject = mol->beginIntegrableObject(iiter);
921     // integrableObject != NULL;
922     // integrableObject = mol->nextIntegrableObject(iiter))
923 skuang 1368 for (sd = seleMan_.beginSelected(selei); sd != NULL;
924     sd = seleMan_.nextSelected(selei)) {
925 skuang 1338
926     idx = sd->getLocalIndex();
927    
928     Vector3d pos = sd->getPos();
929    
930     // wrap the stuntdouble's position back into the box:
931    
932     if (usePeriodicBoundaryConditions_)
933     currentSnap_->wrapVector(pos);
934    
935     // which bin is this stuntdouble in?
936     // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
937    
938 skuang 1560 int binNo = int(rnemdLogWidth_ * (pos.z() / hmat(2,2) + 0.5)) %
939     rnemdLogWidth_;
940     /* no symmetrization allowed due to arbitary rnemdLogWidth_ value
941 skuang 1368 if (rnemdLogWidth_ == midBin_ + 1)
942     if (binNo > midBin_)
943     binNo = nBins_ - binNo;
944 skuang 1560 */
945 skuang 1338 RealType mass = sd->getMass();
946     Vector3d vel = sd->getVel();
947     RealType value;
948 skuang 1368 RealType xVal, yVal, zVal;
949 skuang 1338
950     switch(rnemdType_) {
951 skuang 1368 case rnemdKineticSwap :
952     case rnemdKineticScale :
953 skuang 1338
954     value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
955     vel[2]*vel[2]);
956    
957 skuang 1368 valueCount_[binNo] += 3;
958 skuang 1338 if (sd->isDirectional()) {
959     Vector3d angMom = sd->getJ();
960     Mat3x3d I = sd->getI();
961    
962     if (sd->isLinear()) {
963     int i = sd->linearAxis();
964     int j = (i + 1) % 3;
965     int k = (i + 2) % 3;
966     value += angMom[j] * angMom[j] / I(j, j) +
967     angMom[k] * angMom[k] / I(k, k);
968 gezelter 1339
969 skuang 1368 valueCount_[binNo] +=2;
970 gezelter 1339
971 skuang 1341 } else {
972 skuang 1338 value += angMom[0]*angMom[0]/I(0, 0)
973     + angMom[1]*angMom[1]/I(1, 1)
974     + angMom[2]*angMom[2]/I(2, 2);
975 skuang 1368 valueCount_[binNo] +=3;
976 skuang 1338 }
977     }
978 gezelter 1390 value = value / PhysicalConstants::energyConvert / PhysicalConstants::kb;
979 gezelter 1350
980 skuang 1338 break;
981     case rnemdPx :
982 skuang 1368 case rnemdPxScale :
983 skuang 1338 value = mass * vel[0];
984 skuang 1368 valueCount_[binNo]++;
985 skuang 1338 break;
986     case rnemdPy :
987 skuang 1368 case rnemdPyScale :
988 skuang 1338 value = mass * vel[1];
989 skuang 1368 valueCount_[binNo]++;
990 skuang 1338 break;
991     case rnemdPz :
992 skuang 1368 case rnemdPzScale :
993 skuang 1560 value = pos.z(); //temporarily for homogeneous systems ONLY
994 skuang 1368 valueCount_[binNo]++;
995 skuang 1338 break;
996     case rnemdUnknown :
997     default :
998 skuang 1560 value = 1.0;
999     valueCount_[binNo]++;
1000 skuang 1338 break;
1001     }
1002 skuang 1368 valueHist_[binNo] += value;
1003 skuang 1560
1004     if (output3DTemp_) {
1005     xVal = mass * vel.x() * vel.x() / PhysicalConstants::energyConvert
1006     / PhysicalConstants::kb;
1007     yVal = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert
1008     / PhysicalConstants::kb;
1009     zVal = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert
1010     / PhysicalConstants::kb;
1011     xTempHist_[binNo] += xVal;
1012     yTempHist_[binNo] += yVal;
1013     zTempHist_[binNo] += zVal;
1014     xyzTempCount_[binNo]++;
1015     }
1016 skuang 1338 }
1017 skuang 1368 }
1018    
1019     void RNEMD::getStarted() {
1020 skuang 1560 collectData();
1021     /* now should be able to output profile in step 0, but might not be useful
1022 skuang 1368 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1023     Stats& stat = currentSnap_->statData;
1024     stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1025 skuang 1560 */
1026     getStatus();
1027 skuang 1368 }
1028    
1029     void RNEMD::getStatus() {
1030    
1031     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1032     Stats& stat = currentSnap_->statData;
1033     RealType time = currentSnap_->getTime();
1034    
1035     stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1036     //or to be more meaningful, define another item as exchangeSum_ / time
1037 gezelter 1396 int j;
1038 skuang 1368
1039 gezelter 1350 #ifdef IS_MPI
1040    
1041     // all processors have the same number of bins, and STL vectors pack their
1042     // arrays, so in theory, this should be safe:
1043    
1044 skuang 1368 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueHist_[0],
1045     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1046     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueCount_[0],
1047     rnemdLogWidth_, MPI::INT, MPI::SUM);
1048 skuang 1560 if (output3DTemp_) {
1049 gezelter 1396 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xTempHist_[0],
1050     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1051     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &yTempHist_[0],
1052     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1053     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &zTempHist_[0],
1054     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1055 skuang 1560 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xyzTempCount_[0],
1056     rnemdLogWidth_, MPI::INT, MPI::SUM);
1057 gezelter 1396 }
1058 gezelter 1350 // If we're the root node, should we print out the results
1059     int worldRank = MPI::COMM_WORLD.Get_rank();
1060     if (worldRank == 0) {
1061     #endif
1062 skuang 1368 rnemdLog_ << time;
1063     for (j = 0; j < rnemdLogWidth_; j++) {
1064     rnemdLog_ << "\t" << valueHist_[j] / (RealType)valueCount_[j];
1065     }
1066     rnemdLog_ << "\n";
1067 skuang 1560 if (output3DTemp_) {
1068 skuang 1368 xTempLog_ << time;
1069     for (j = 0; j < rnemdLogWidth_; j++) {
1070 skuang 1560 xTempLog_ << "\t" << xTempHist_[j] / (RealType)xyzTempCount_[j];
1071 skuang 1368 }
1072     xTempLog_ << "\n";
1073     yTempLog_ << time;
1074     for (j = 0; j < rnemdLogWidth_; j++) {
1075 skuang 1560 yTempLog_ << "\t" << yTempHist_[j] / (RealType)xyzTempCount_[j];
1076 skuang 1368 }
1077     yTempLog_ << "\n";
1078     zTempLog_ << time;
1079     for (j = 0; j < rnemdLogWidth_; j++) {
1080 skuang 1560 zTempLog_ << "\t" << zTempHist_[j] / (RealType)xyzTempCount_[j];
1081 skuang 1368 }
1082     zTempLog_ << "\n";
1083     }
1084 gezelter 1350 #ifdef IS_MPI
1085 gezelter 1396 }
1086 gezelter 1350 #endif
1087 gezelter 1396 for (j = 0; j < rnemdLogWidth_; j++) {
1088     valueCount_[j] = 0;
1089     valueHist_[j] = 0.0;
1090     }
1091 skuang 1560 if (output3DTemp_)
1092 gezelter 1396 for (j = 0; j < rnemdLogWidth_; j++) {
1093     xTempHist_[j] = 0.0;
1094     yTempHist_[j] = 0.0;
1095     zTempHist_[j] = 0.0;
1096 skuang 1560 xyzTempCount_[j] = 0;
1097 gezelter 1396 }
1098 gezelter 1334 }
1099 skuang 1338 }

Properties

Name Value
svn:keywords Author Id Revision Date