ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/integrators/NVT.cpp
Revision: 2071
Committed: Sat Mar 7 21:41:51 2015 UTC (10 years, 4 months ago) by gezelter
File size: 8224 byte(s)
Log Message:
Reducing the number of warnings when using g++ to compile.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 #include "integrators/NVT.hpp"
44 #include "primitives/Molecule.hpp"
45 #include "utils/simError.h"
46 #include "utils/PhysicalConstants.hpp"
47
48 namespace OpenMD {
49
50 NVT::NVT(SimInfo* info) : VelocityVerletIntegrator(info), maxIterNum_(4),
51 chiTolerance_(1e-6) {
52
53 Globals* simParams = info_->getSimParams();
54
55 if (!simParams->getUseIntialExtendedSystemState()) {
56 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
57 snap->setThermostat(make_pair(0.0, 0.0));
58 }
59
60 if (!simParams->haveTargetTemp()) {
61 sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp_!\n");
62 painCave.isFatal = 1;
63 painCave.severity = OPENMD_ERROR;
64 simError();
65 } else {
66 targetTemp_ = simParams->getTargetTemp();
67 }
68
69 // We must set tauThermostat.
70
71 if (!simParams->haveTauThermostat()) {
72 sprintf(painCave.errMsg, "If you use the constant temperature\n"
73 "\tintegrator, you must set tauThermostat.\n");
74
75 painCave.severity = OPENMD_ERROR;
76 painCave.isFatal = 1;
77 simError();
78 } else {
79 tauThermostat_ = simParams->getTauThermostat();
80 }
81
82 updateSizes();
83 }
84
85 void NVT::doUpdateSizes() {
86 oldVel_.resize(info_->getNIntegrableObjects());
87 oldJi_.resize(info_->getNIntegrableObjects());
88 }
89
90 void NVT::moveA() {
91 SimInfo::MoleculeIterator i;
92 Molecule::IntegrableObjectIterator j;
93 Molecule* mol;
94 StuntDouble* sd;
95 Vector3d Tb;
96 Vector3d ji;
97 RealType mass;
98 Vector3d vel;
99 Vector3d pos;
100 Vector3d frc;
101
102 pair<RealType, RealType> thermostat = snap->getThermostat();
103
104 // We need the temperature at time = t for the chi update below:
105
106 RealType instTemp = thermo.getTemperature();
107
108 for (mol = info_->beginMolecule(i); mol != NULL;
109 mol = info_->nextMolecule(i)) {
110
111 for (sd = mol->beginIntegrableObject(j); sd != NULL;
112 sd = mol->nextIntegrableObject(j)) {
113
114 vel = sd->getVel();
115 pos = sd->getPos();
116 frc = sd->getFrc();
117
118 mass = sd->getMass();
119
120 // velocity half step (use chi from previous step here):
121 vel += dt2 *PhysicalConstants::energyConvert/mass*frc
122 - dt2*thermostat.first*vel;
123
124 // position whole step
125 pos += dt * vel;
126
127 sd->setVel(vel);
128 sd->setPos(pos);
129
130 if (sd->isDirectional()) {
131
132 //convert the torque to body frame
133 Tb = sd->lab2Body(sd->getTrq());
134
135 // get the angular momentum, and propagate a half step
136
137 ji = sd->getJ();
138
139 ji += dt2*PhysicalConstants::energyConvert*Tb
140 - dt2*thermostat.first *ji;
141
142 rotAlgo_->rotate(sd, ji, dt);
143
144 sd->setJ(ji);
145 }
146 }
147
148 }
149
150 flucQ_->moveA();
151 rattle_->constraintA();
152
153 // Finally, evolve chi a half step (just like a velocity) using
154 // temperature at time t, not time t+dt/2
155
156 thermostat.first += dt2 * (instTemp / targetTemp_ - 1.0)
157 / (tauThermostat_ * tauThermostat_);
158 thermostat.second += thermostat.first * dt2;
159
160 snap->setThermostat(thermostat);
161 }
162
163 void NVT::moveB() {
164 SimInfo::MoleculeIterator i;
165 Molecule::IntegrableObjectIterator j;
166 Molecule* mol;
167 StuntDouble* sd;
168
169 Vector3d Tb;
170 Vector3d ji;
171 Vector3d vel;
172 Vector3d frc;
173 RealType mass;
174 RealType instTemp;
175 int index;
176 // Set things up for the iteration:
177
178 pair<RealType, RealType> thermostat = snap->getThermostat();
179 RealType oldChi = thermostat.first;
180 RealType prevChi;
181
182 index = 0;
183 for (mol = info_->beginMolecule(i); mol != NULL;
184 mol = info_->nextMolecule(i)) {
185
186 for (sd = mol->beginIntegrableObject(j); sd != NULL;
187 sd = mol->nextIntegrableObject(j)) {
188
189 oldVel_[index] = sd->getVel();
190
191 if (sd->isDirectional())
192 oldJi_[index] = sd->getJ();
193
194 ++index;
195 }
196 }
197
198 // do the iteration:
199
200 for(int k = 0; k < maxIterNum_; k++) {
201 index = 0;
202 instTemp = thermo.getTemperature();
203
204 // evolve chi another half step using the temperature at t + dt/2
205
206 prevChi = thermostat.first;
207 thermostat.first = oldChi + dt2 * (instTemp / targetTemp_ - 1.0)
208 / (tauThermostat_ * tauThermostat_);
209
210 for (mol = info_->beginMolecule(i); mol != NULL;
211 mol = info_->nextMolecule(i)) {
212
213 for (sd = mol->beginIntegrableObject(j); sd != NULL;
214 sd = mol->nextIntegrableObject(j)) {
215
216 frc = sd->getFrc();
217 mass = sd->getMass();
218
219 // velocity half step
220
221 vel = oldVel_[index]
222 + dt2/mass*PhysicalConstants::energyConvert * frc
223 - dt2*thermostat.first*oldVel_[index];
224
225 sd->setVel(vel);
226
227 if (sd->isDirectional()) {
228
229 // get and convert the torque to body frame
230
231 Tb = sd->lab2Body(sd->getTrq());
232
233 ji = oldJi_[index] + dt2*PhysicalConstants::energyConvert*Tb
234 - dt2*thermostat.first *oldJi_[index];
235
236 sd->setJ(ji);
237 }
238
239
240 ++index;
241 }
242 }
243
244 rattle_->constraintB();
245
246 if (fabs(prevChi - thermostat.first) <= chiTolerance_)
247 break;
248
249 }
250
251 flucQ_->moveB();
252
253 thermostat.second += dt2 * thermostat.first;
254 snap->setThermostat(thermostat);
255 }
256
257 void NVT::resetIntegrator() {
258 snap->setThermostat(make_pair(0.0, 0.0));
259 }
260
261 RealType NVT::calcConservedQuantity() {
262
263 pair<RealType, RealType> thermostat = snap->getThermostat();
264 RealType conservedQuantity;
265 RealType fkBT;
266 RealType Energy;
267 RealType thermostat_kinetic;
268 RealType thermostat_potential;
269
270 fkBT = info_->getNdf() *PhysicalConstants::kB *targetTemp_;
271
272 Energy = thermo.getTotalEnergy();
273
274 thermostat_kinetic = fkBT * tauThermostat_ * tauThermostat_ * thermostat.first * thermostat.first / (2.0 * PhysicalConstants::energyConvert);
275
276 thermostat_potential = fkBT * thermostat.second / PhysicalConstants::energyConvert;
277
278 conservedQuantity = Energy + thermostat_kinetic + thermostat_potential;
279
280 return conservedQuantity;
281 }
282
283
284 }//end namespace OpenMD

Properties

Name Value
svn:keywords Author Id Revision Date