| 6 |  | * redistribute this software in source and binary code form, provided | 
| 7 |  | * that the following conditions are met: | 
| 8 |  | * | 
| 9 | < | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | < | *    publication of scientific results based in part on use of the | 
| 11 | < | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | < | *    the article in which the program was described (Matthew | 
| 13 | < | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | < | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | < | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | < | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | < | * | 
| 18 | < | * 2. Redistributions of source code must retain the above copyright | 
| 9 | > | * 1. Redistributions of source code must retain the above copyright | 
| 10 |  | *    notice, this list of conditions and the following disclaimer. | 
| 11 |  | * | 
| 12 | < | * 3. Redistributions in binary form must reproduce the above copyright | 
| 12 | > | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 |  | *    notice, this list of conditions and the following disclaimer in the | 
| 14 |  | *    documentation and/or other materials provided with the | 
| 15 |  | *    distribution. | 
| 28 |  | * arising out of the use of or inability to use software, even if the | 
| 29 |  | * University of Notre Dame has been advised of the possibility of | 
| 30 |  | * such damages. | 
| 31 | + | * | 
| 32 | + | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | + | * research, please cite the appropriate papers when you publish your | 
| 34 | + | * work.  Good starting points are: | 
| 35 | + | * | 
| 36 | + | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | + | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | + | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | + | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 40 |  | */ | 
| 41 |  |  | 
| 42 |  | #include "integrators/NVT.hpp" | 
| 43 |  | #include "primitives/Molecule.hpp" | 
| 44 |  | #include "utils/simError.h" | 
| 45 | < | #include "utils/OOPSEConstant.hpp" | 
| 45 | > | #include "utils/PhysicalConstants.hpp" | 
| 46 |  |  | 
| 47 | < | namespace oopse { | 
| 47 | > | namespace OpenMD { | 
| 48 |  |  | 
| 49 |  | NVT::NVT(SimInfo* info) : VelocityVerletIntegrator(info), chiTolerance_ (1e-6), maxIterNum_(4) { | 
| 50 |  |  | 
| 59 |  | if (!simParams->haveTargetTemp()) { | 
| 60 |  | sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp_!\n"); | 
| 61 |  | painCave.isFatal = 1; | 
| 62 | < | painCave.severity = OOPSE_ERROR; | 
| 62 | > | painCave.severity = OPENMD_ERROR; | 
| 63 |  | simError(); | 
| 64 |  | } else { | 
| 65 |  | targetTemp_ = simParams->getTargetTemp(); | 
| 71 |  | sprintf(painCave.errMsg, "If you use the constant temperature\n" | 
| 72 |  | "\tintegrator, you must set tauThermostat.\n"); | 
| 73 |  |  | 
| 74 | < | painCave.severity = OOPSE_ERROR; | 
| 74 | > | painCave.severity = OPENMD_ERROR; | 
| 75 |  | painCave.isFatal = 1; | 
| 76 |  | simError(); | 
| 77 |  | } else { | 
| 115 |  | mass = integrableObject->getMass(); | 
| 116 |  |  | 
| 117 |  | // velocity half step  (use chi from previous step here): | 
| 118 | < | //vel[j] += dt2 * ((frc[j] / mass ) * OOPSEConstant::energyConvert - vel[j]*chi); | 
| 119 | < | vel += dt2 *OOPSEConstant::energyConvert/mass*frc - dt2*chi*vel; | 
| 118 | > | //vel[j] += dt2 * ((frc[j] / mass ) * PhysicalConstants::energyConvert - vel[j]*chi); | 
| 119 | > | vel += dt2 *PhysicalConstants::energyConvert/mass*frc - dt2*chi*vel; | 
| 120 |  |  | 
| 121 |  | // position whole step | 
| 122 |  | //pos[j] += dt * vel[j]; | 
| 134 |  |  | 
| 135 |  | ji = integrableObject->getJ(); | 
| 136 |  |  | 
| 137 | < | //ji[j] += dt2 * (Tb[j] * OOPSEConstant::energyConvert - ji[j]*chi); | 
| 138 | < | ji += dt2*OOPSEConstant::energyConvert*Tb - dt2*chi *ji; | 
| 137 | > | //ji[j] += dt2 * (Tb[j] * PhysicalConstants::energyConvert - ji[j]*chi); | 
| 138 | > | ji += dt2*PhysicalConstants::energyConvert*Tb - dt2*chi *ji; | 
| 139 |  | rotAlgo->rotate(integrableObject, ji, dt); | 
| 140 |  |  | 
| 141 |  | integrableObject->setJ(ji); | 
| 211 |  |  | 
| 212 |  | // velocity half step | 
| 213 |  | //for(j = 0; j < 3; j++) | 
| 214 | < | //    vel[j] = oldVel_[3*i+j] + dt2 * ((frc[j] / mass ) * OOPSEConstant::energyConvert - oldVel_[3*i + j]*chi); | 
| 215 | < | vel = oldVel_[index] + dt2/mass*OOPSEConstant::energyConvert * frc - dt2*chi*oldVel_[index]; | 
| 214 | > | //    vel[j] = oldVel_[3*i+j] + dt2 * ((frc[j] / mass ) * PhysicalConstants::energyConvert - oldVel_[3*i + j]*chi); | 
| 215 | > | vel = oldVel_[index] + dt2/mass*PhysicalConstants::energyConvert * frc - dt2*chi*oldVel_[index]; | 
| 216 |  |  | 
| 217 |  | integrableObject->setVel(vel); | 
| 218 |  |  | 
| 223 |  | Tb =  integrableObject->lab2Body(integrableObject->getTrq()); | 
| 224 |  |  | 
| 225 |  | //for(j = 0; j < 3; j++) | 
| 226 | < | //    ji[j] = oldJi_[3*i + j] + dt2 * (Tb[j] * OOPSEConstant::energyConvert - oldJi_[3*i+j]*chi); | 
| 227 | < | ji = oldJi_[index] + dt2*OOPSEConstant::energyConvert*Tb - dt2*chi *oldJi_[index]; | 
| 226 | > | //    ji[j] = oldJi_[3*i + j] + dt2 * (Tb[j] * PhysicalConstants::energyConvert - oldJi_[3*i+j]*chi); | 
| 227 | > | ji = oldJi_[index] + dt2*PhysicalConstants::energyConvert*Tb - dt2*chi *oldJi_[index]; | 
| 228 |  |  | 
| 229 |  | integrableObject->setJ(ji); | 
| 230 |  | } | 
| 263 |  | RealType thermostat_kinetic; | 
| 264 |  | RealType thermostat_potential; | 
| 265 |  |  | 
| 266 | < | fkBT = info_->getNdf() *OOPSEConstant::kB *targetTemp_; | 
| 266 | > | fkBT = info_->getNdf() *PhysicalConstants::kB *targetTemp_; | 
| 267 |  |  | 
| 268 |  | Energy = thermo.getTotalE(); | 
| 269 |  |  | 
| 270 | < | thermostat_kinetic = fkBT * tauThermostat_ * tauThermostat_ * chi * chi / (2.0 * OOPSEConstant::energyConvert); | 
| 270 | > | thermostat_kinetic = fkBT * tauThermostat_ * tauThermostat_ * chi * chi / (2.0 * PhysicalConstants::energyConvert); | 
| 271 |  |  | 
| 272 | < | thermostat_potential = fkBT * integralOfChidt / OOPSEConstant::energyConvert; | 
| 272 | > | thermostat_potential = fkBT * integralOfChidt / PhysicalConstants::energyConvert; | 
| 273 |  |  | 
| 274 |  | conservedQuantity = Energy + thermostat_kinetic + thermostat_potential; | 
| 275 |  |  | 
| 277 |  | } | 
| 278 |  |  | 
| 279 |  |  | 
| 280 | < | }//end namespace oopse | 
| 280 | > | }//end namespace OpenMD |