ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/integrators/NVT.cpp
(Generate patch)

Comparing trunk/src/integrators/NVT.cpp (file contents):
Revision 271 by tim, Mon Jan 17 16:58:32 2005 UTC vs.
Revision 1782 by gezelter, Wed Aug 22 02:28:28 2012 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   #include "integrators/NVT.hpp"
44   #include "primitives/Molecule.hpp"
45   #include "utils/simError.h"
46 < #include "utils/OOPSEConstant.hpp"
46 > #include "utils/PhysicalConstants.hpp"
47  
48 < namespace oopse {
48 > namespace OpenMD {
49  
50 < NVT::NVT(SimInfo* info) : VelocityVerletIntegrator(info), chiTolerance_ (1e-6), maxIterNum_(4) {
50 >  NVT::NVT(SimInfo* info) : VelocityVerletIntegrator(info), chiTolerance_ (1e-6), maxIterNum_(4) {
51  
52      Globals* simParams = info_->getSimParams();
53  
54 <    if (!simParams->getUseInitXSstate()) {
55 <        Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
56 <        currSnapshot->setChi(0.0);
56 <        currSnapshot->setIntegralOfChiDt(0.0);
54 >    if (!simParams->getUseIntialExtendedSystemState()) {
55 >      Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
56 >      snap->setThermostat(make_pair(0.0, 0.0));
57      }
58      
59      if (!simParams->haveTargetTemp()) {
60 <        sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp_!\n");
61 <        painCave.isFatal = 1;
62 <        painCave.severity = OOPSE_ERROR;
63 <        simError();
60 >      sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp_!\n");
61 >      painCave.isFatal = 1;
62 >      painCave.severity = OPENMD_ERROR;
63 >      simError();
64      } else {
65 <        targetTemp_ = simParams->getTargetTemp();
65 >      targetTemp_ = simParams->getTargetTemp();
66      }
67  
68 <    // We must set tauThermostat_.
68 >    // We must set tauThermostat.
69  
70      if (!simParams->haveTauThermostat()) {
71 <        sprintf(painCave.errMsg, "If you use the constant temperature\n"
72 <                                     "\tintegrator, you must set tauThermostat_.\n");
71 >      sprintf(painCave.errMsg, "If you use the constant temperature\n"
72 >              "\tintegrator, you must set tauThermostat.\n");
73  
74 <        painCave.severity = OOPSE_ERROR;
75 <        painCave.isFatal = 1;
76 <        simError();
74 >      painCave.severity = OPENMD_ERROR;
75 >      painCave.isFatal = 1;
76 >      simError();
77      } else {
78 <        tauThermostat_ = simParams->getTauThermostat();
78 >      tauThermostat_ = simParams->getTauThermostat();
79      }
80  
81 <    update();
82 < }
81 >    updateSizes();
82 >  }
83  
84 < void NVT::doUpdate() {
84 >  void NVT::doUpdateSizes() {
85      oldVel_.resize(info_->getNIntegrableObjects());
86 <    oldJi_.resize(info_->getNIntegrableObjects());    
87 < }
88 < void NVT::moveA() {
86 >    oldJi_.resize(info_->getNIntegrableObjects());
87 >  }
88 >
89 >  void NVT::moveA() {
90      SimInfo::MoleculeIterator i;
91      Molecule::IntegrableObjectIterator  j;
92      Molecule* mol;
93 <    StuntDouble* integrableObject;
93 >    StuntDouble* sd;
94      Vector3d Tb;
95      Vector3d ji;
96 <    double mass;
96 >    RealType mass;
97      Vector3d vel;
98      Vector3d pos;
99      Vector3d frc;
100  
101 <    double chi = currentSnapshot_->getChi();
102 <    double integralOfChidt = currentSnapshot_->getIntegralOfChiDt();
102 <    
101 >    pair<RealType, RealType> thermostat = snap->getThermostat();
102 >
103      // We need the temperature at time = t for the chi update below:
104  
105 <    double instTemp = thermo.getTemperature();
105 >    RealType instTemp = thermo.getTemperature();
106  
107 <    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
108 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
109 <               integrableObject = mol->nextIntegrableObject(j)) {
107 >    for (mol = info_->beginMolecule(i); mol != NULL;
108 >         mol = info_->nextMolecule(i)) {
109  
110 <        vel = integrableObject->getVel();
111 <        pos = integrableObject->getPos();
113 <        frc = integrableObject->getFrc();
110 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
111 >           sd = mol->nextIntegrableObject(j)) {
112  
113 <        mass = integrableObject->getMass();
113 >        vel = sd->getVel();
114 >        pos = sd->getPos();
115 >        frc = sd->getFrc();
116  
117 <        // velocity half step  (use chi from previous step here):
118 <        //vel[j] += dt2 * ((frc[j] / mass ) * OOPSEConstant::energyConvert - vel[j]*chi);
119 <        vel += dt2 *OOPSEConstant::energyConvert/mass*frc - dt2*chi*vel;
117 >        mass = sd->getMass();
118 >
119 >        // velocity half step (use chi from previous step here):
120 >        vel += dt2 *PhysicalConstants::energyConvert/mass*frc
121 >          - dt2*thermostat.first*vel;
122          
123          // position whole step
122        //pos[j] += dt * vel[j];
124          pos += dt * vel;
125  
126 <        integrableObject->setVel(vel);
127 <        integrableObject->setPos(pos);
126 >        sd->setVel(vel);
127 >        sd->setPos(pos);
128  
129 <        if (integrableObject->isDirectional()) {
129 >        if (sd->isDirectional()) {
130  
131 <            //convert the torque to body frame
132 <            Tb = integrableObject->lab2Body(integrableObject->getTrq());
131 >          //convert the torque to body frame
132 >          Tb = sd->lab2Body(sd->getTrq());
133  
134 <            // get the angular momentum, and propagate a half step
134 >          // get the angular momentum, and propagate a half step
135  
136 <            ji = integrableObject->getJ();
136 >          ji = sd->getJ();
137  
138 <            //ji[j] += dt2 * (Tb[j] * OOPSEConstant::energyConvert - ji[j]*chi);
139 <            ji += dt2*OOPSEConstant::energyConvert*Tb - dt2*chi *ji;
139 <            rotAlgo->rotate(integrableObject, ji, dt);
138 >          ji += dt2*PhysicalConstants::energyConvert*Tb
139 >            - dt2*thermostat.first *ji;
140  
141 <            integrableObject->setJ(ji);
141 >          rotAlgo_->rotate(sd, ji, dt);
142 >
143 >          sd->setJ(ji);
144          }
145 <    }
145 >      }
146  
147      }
148      
149 <    rattle->constraintA();
149 >    flucQ_->moveA();
150 >    rattle_->constraintA();
151  
152      // Finally, evolve chi a half step (just like a velocity) using
153      // temperature at time t, not time t+dt/2
154  
155 <    
156 <    chi += dt2 * (instTemp / targetTemp_ - 1.0) / (tauThermostat_ * tauThermostat_);
157 <    integralOfChidt += chi * dt2;
155 >    thermostat.first += dt2 * (instTemp / targetTemp_ - 1.0)
156 >      / (tauThermostat_ * tauThermostat_);
157 >    thermostat.second += thermostat.first * dt2;
158  
159 <    currentSnapshot_->setChi(chi);
160 <    currentSnapshot_->setIntegralOfChiDt(integralOfChidt);
158 < }
159 >    snap->setThermostat(thermostat);
160 >  }
161  
162 < void NVT::moveB() {
162 >  void NVT::moveB() {
163      SimInfo::MoleculeIterator i;
164      Molecule::IntegrableObjectIterator  j;
165      Molecule* mol;
166 <    StuntDouble* integrableObject;
166 >    StuntDouble* sd;
167      
168      Vector3d Tb;
169      Vector3d ji;    
170      Vector3d vel;
171      Vector3d frc;
172 <    double mass;
173 <    double instTemp;
172 >    RealType mass;
173 >    RealType instTemp;
174      int index;
175      // Set things up for the iteration:
176  
177 <    double chi = currentSnapshot_->getChi();
178 <    double oldChi = chi;
179 <    double  prevChi;
178 <    double integralOfChidt = currentSnapshot_->getIntegralOfChiDt();
177 >    pair<RealType, RealType> thermostat = snap->getThermostat();
178 >    RealType oldChi = thermostat.first;
179 >    RealType  prevChi;
180  
181      index = 0;
182 <    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
183 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
183 <               integrableObject = mol->nextIntegrableObject(j)) {
184 <                oldVel_[index] = integrableObject->getVel();
185 <                oldJi_[index] = integrableObject->getJ();                
182 >    for (mol = info_->beginMolecule(i); mol != NULL;
183 >         mol = info_->nextMolecule(i)) {
184  
185 <                ++index;    
186 <        }
187 <          
185 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
186 >           sd = mol->nextIntegrableObject(j)) {
187 >
188 >        oldVel_[index] = sd->getVel();
189 >        
190 >        if (sd->isDirectional())
191 >          oldJi_[index] = sd->getJ();                
192 >        
193 >        ++index;    
194 >      }          
195      }
196  
197      // do the iteration:
198  
199      for(int k = 0; k < maxIterNum_; k++) {
200 <        index = 0;
201 <        instTemp = thermo.getTemperature();
200 >      index = 0;
201 >      instTemp = thermo.getTemperature();
202  
203 <        // evolve chi another half step using the temperature at t + dt/2
203 >      // evolve chi another half step using the temperature at t + dt/2
204  
205 <        prevChi = chi;
206 <        chi = oldChi + dt2 * (instTemp / targetTemp_ - 1.0) / (tauThermostat_ * tauThermostat_);
205 >      prevChi = thermostat.first;
206 >      thermostat.first = oldChi + dt2 * (instTemp / targetTemp_ - 1.0)
207 >        / (tauThermostat_ * tauThermostat_);
208  
209 <        for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
210 <            for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
211 <                   integrableObject = mol->nextIntegrableObject(j)) {
209 >      for (mol = info_->beginMolecule(i); mol != NULL;
210 >           mol = info_->nextMolecule(i)) {
211 >        
212 >        for (sd = mol->beginIntegrableObject(j); sd != NULL;
213 >             sd = mol->nextIntegrableObject(j)) {
214  
215 <                frc = integrableObject->getFrc();
216 <                vel = integrableObject->getVel();
215 >          frc = sd->getFrc();
216 >          vel = sd->getVel();
217  
218 <                mass = integrableObject->getMass();
218 >          mass = sd->getMass();
219  
220 <                // velocity half step
221 <                //for(j = 0; j < 3; j++)
222 <                //    vel[j] = oldVel_[3*i+j] + dt2 * ((frc[j] / mass ) * OOPSEConstant::energyConvert - oldVel_[3*i + j]*chi);
223 <                vel = oldVel_[index] + dt2/mass*OOPSEConstant::energyConvert * frc - dt2*chi*oldVel_[index];
220 >          // velocity half step
221 >
222 >          vel = oldVel_[index]
223 >            + dt2/mass*PhysicalConstants::energyConvert * frc
224 >            - dt2*thermostat.first*oldVel_[index];
225              
226 <                integrableObject->setVel(vel);
226 >          sd->setVel(vel);
227  
228 <                if (integrableObject->isDirectional()) {
228 >          if (sd->isDirectional()) {
229  
230 <                    // get and convert the torque to body frame
230 >            // get and convert the torque to body frame
231  
232 <                    Tb =  integrableObject->lab2Body(integrableObject->getTrq());
232 >            Tb =  sd->lab2Body(sd->getTrq());
233  
234 <                    //for(j = 0; j < 3; j++)
235 <                    //    ji[j] = oldJi_[3*i + j] + dt2 * (Tb[j] * OOPSEConstant::energyConvert - oldJi_[3*i+j]*chi);
227 <                    ji = oldJi_[index] + dt2*OOPSEConstant::energyConvert*Tb - dt2*chi *oldJi_[index];
234 >            ji = oldJi_[index] + dt2*PhysicalConstants::energyConvert*Tb
235 >              - dt2*thermostat.first *oldJi_[index];
236  
237 <                    integrableObject->setJ(ji);
238 <                }
237 >            sd->setJ(ji);
238 >          }
239  
240  
241 <                ++index;
242 <            }
243 <        }
241 >          ++index;
242 >        }
243 >      }
244      
245 +      rattle_->constraintB();
246  
247 <        rattle->constraintB();
247 >      if (fabs(prevChi - thermostat.first) <= chiTolerance_)
248 >        break;
249  
240        if (fabs(prevChi - chi) <= chiTolerance_)
241            break;
242
250      }
251  
252 <    integralOfChidt += dt2 * chi;
252 >    flucQ_->moveB();
253  
254 <    currentSnapshot_->setChi(chi);
255 <    currentSnapshot_->setIntegralOfChiDt(integralOfChidt);
256 < }
254 >    thermostat.second += dt2 * thermostat.first;
255 >    snap->setThermostat(thermostat);
256 >  }
257  
258 +  void NVT::resetIntegrator() {
259 +    snap->setThermostat(make_pair(0.0, 0.0));
260 +  }
261 +  
262 +  RealType NVT::calcConservedQuantity() {
263  
264 < double NVT::calcConservedQuantity() {
265 <
266 <    double chi = currentSnapshot_->getChi();
267 <    double integralOfChidt = currentSnapshot_->getIntegralOfChiDt();
268 <    double conservedQuantity;
269 <    double fkBT;
258 <    double Energy;
259 <    double thermostat_kinetic;
260 <    double thermostat_potential;
264 >    pair<RealType, RealType> thermostat = snap->getThermostat();
265 >    RealType conservedQuantity;
266 >    RealType fkBT;
267 >    RealType Energy;
268 >    RealType thermostat_kinetic;
269 >    RealType thermostat_potential;
270      
271 <    fkBT = info_->getNdf() *OOPSEConstant::kB *targetTemp_;
271 >    fkBT = info_->getNdf() *PhysicalConstants::kB *targetTemp_;
272  
273 <    Energy = thermo.getTotalE();
273 >    Energy = thermo.getTotalEnergy();
274  
275 <    thermostat_kinetic = fkBT * tauThermostat_ * tauThermostat_ * chi * chi / (2.0 * OOPSEConstant::energyConvert);
275 >    thermostat_kinetic = fkBT * tauThermostat_ * tauThermostat_ * thermostat.first * thermostat.first / (2.0 * PhysicalConstants::energyConvert);
276  
277 <    thermostat_potential = fkBT * integralOfChidt / OOPSEConstant::energyConvert;
277 >    thermostat_potential = fkBT * thermostat.second / PhysicalConstants::energyConvert;
278  
279      conservedQuantity = Energy + thermostat_kinetic + thermostat_potential;
280  
281      return conservedQuantity;
282 < }
282 >  }
283  
284  
285 < }//end namespace oopse
285 > }//end namespace OpenMD

Comparing trunk/src/integrators/NVT.cpp (property svn:keywords):
Revision 271 by tim, Mon Jan 17 16:58:32 2005 UTC vs.
Revision 1782 by gezelter, Wed Aug 22 02:28:28 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines