ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/integrators/NVT.cpp
(Generate patch)

Comparing trunk/src/integrators/NVT.cpp (file contents):
Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
Revision 1879 by gezelter, Sun Jun 16 15:15:42 2013 UTC

# Line 1 | Line 1
1 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 > */
42 >
43 > #include "integrators/NVT.hpp"
44 > #include "primitives/Molecule.hpp"
45 > #include "utils/simError.h"
46 > #include "utils/PhysicalConstants.hpp"
47  
48 < #include "Atom.hpp"
4 < #include "SRI.hpp"
5 < #include "AbstractClasses.hpp"
6 < #include "SimInfo.hpp"
7 < #include "ForceFields.hpp"
8 < #include "Thermo.hpp"
9 < #include "ReadWrite.hpp"
10 < #include "Integrator.hpp"
11 < #include "simError.h"
48 > namespace OpenMD {
49  
50 +  NVT::NVT(SimInfo* info) : VelocityVerletIntegrator(info), chiTolerance_ (1e-6), maxIterNum_(4) {
51  
52 < // Basic thermostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697
52 >    Globals* simParams = info_->getSimParams();
53  
54 < template<typename T> NVT<T>::NVT ( SimInfo *theInfo, ForceFields* the_ff):
55 <  T( theInfo, the_ff )
56 < {
19 <  GenericData* data;
20 <  DoubleData * chiValue;
21 <  DoubleData * integralOfChidtValue;
22 <
23 <  chiValue = NULL;
24 <  integralOfChidtValue = NULL;
25 <
26 <  chi = 0.0;
27 <  have_tau_thermostat = 0;
28 <  have_target_temp = 0;
29 <  have_chi_tolerance = 0;
30 <  integralOfChidt = 0.0;
31 <
32 <
33 <  if( theInfo->useInitXSstate ){
34 <
35 <    // retrieve chi and integralOfChidt from simInfo
36 <    data = info->getProperty(CHIVALUE_ID);
37 <    if(data){
38 <      chiValue = dynamic_cast<DoubleData*>(data);
54 >    if (!simParams->getUseIntialExtendedSystemState()) {
55 >      Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
56 >      snap->setThermostat(make_pair(0.0, 0.0));
57      }
58      
59 <    data = info->getProperty(INTEGRALOFCHIDT_ID);
60 <    if(data){
61 <      integralOfChidtValue = dynamic_cast<DoubleData*>(data);
59 >    if (!simParams->haveTargetTemp()) {
60 >      sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp_!\n");
61 >      painCave.isFatal = 1;
62 >      painCave.severity = OPENMD_ERROR;
63 >      simError();
64 >    } else {
65 >      targetTemp_ = simParams->getTargetTemp();
66      }
45    
46    // chi and integralOfChidt should appear by pair
47    if(chiValue && integralOfChidtValue){
48      chi = chiValue->getData();
49      integralOfChidt = integralOfChidtValue->getData();
50    }
51  }
67  
68 <  oldVel = new double[3*integrableObjects.size()];
54 <  oldJi = new double[3*integrableObjects.size()];
55 < }
68 >    // We must set tauThermostat.
69  
70 < template<typename T> NVT<T>::~NVT() {
71 <  delete[] oldVel;
72 <  delete[] oldJi;
60 < }
70 >    if (!simParams->haveTauThermostat()) {
71 >      sprintf(painCave.errMsg, "If you use the constant temperature\n"
72 >              "\tintegrator, you must set tauThermostat.\n");
73  
74 < template<typename T> void NVT<T>::moveA() {
74 >      painCave.severity = OPENMD_ERROR;
75 >      painCave.isFatal = 1;
76 >      simError();
77 >    } else {
78 >      tauThermostat_ = simParams->getTauThermostat();
79 >    }
80  
81 <  int i, j;
82 <  DirectionalAtom* dAtom;
66 <  double Tb[3], ji[3];
67 <  double mass;
68 <  double vel[3], pos[3], frc[3];
81 >    updateSizes();
82 >  }
83  
84 <  double instTemp;
84 >  void NVT::doUpdateSizes() {
85 >    oldVel_.resize(info_->getNIntegrableObjects());
86 >    oldJi_.resize(info_->getNIntegrableObjects());
87 >  }
88  
89 <  // We need the temperature at time = t for the chi update below:
89 >  void NVT::moveA() {
90 >    SimInfo::MoleculeIterator i;
91 >    Molecule::IntegrableObjectIterator  j;
92 >    Molecule* mol;
93 >    StuntDouble* sd;
94 >    Vector3d Tb;
95 >    Vector3d ji;
96 >    RealType mass;
97 >    Vector3d vel;
98 >    Vector3d pos;
99 >    Vector3d frc;
100  
101 <  instTemp = tStats->getTemperature();
101 >    pair<RealType, RealType> thermostat = snap->getThermostat();
102  
103 <  for( i=0; i < integrableObjects.size(); i++ ){
103 >    // We need the temperature at time = t for the chi update below:
104  
105 <    integrableObjects[i]->getVel( vel );
79 <    integrableObjects[i]->getPos( pos );
80 <    integrableObjects[i]->getFrc( frc );
105 >    RealType instTemp = thermo.getTemperature();
106  
107 <    mass = integrableObjects[i]->getMass();
107 >    for (mol = info_->beginMolecule(i); mol != NULL;
108 >         mol = info_->nextMolecule(i)) {
109  
110 <    for (j=0; j < 3; j++) {
111 <      // velocity half step  (use chi from previous step here):
86 <      vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*chi);
87 <      // position whole step
88 <      pos[j] += dt * vel[j];
89 <    }
110 >      for (sd = mol->beginIntegrableObject(j); sd != NULL;
111 >           sd = mol->nextIntegrableObject(j)) {
112  
113 <    integrableObjects[i]->setVel( vel );
114 <    integrableObjects[i]->setPos( pos );
113 >        vel = sd->getVel();
114 >        pos = sd->getPos();
115 >        frc = sd->getFrc();
116  
117 <    if( integrableObjects[i]->isDirectional() ){
117 >        mass = sd->getMass();
118  
119 <      // get and convert the torque to body frame
119 >        // velocity half step (use chi from previous step here):
120 >        vel += dt2 *PhysicalConstants::energyConvert/mass*frc
121 >          - dt2*thermostat.first*vel;
122 >        
123 >        // position whole step
124 >        pos += dt * vel;
125  
126 <      integrableObjects[i]->getTrq( Tb );
127 <      integrableObjects[i]->lab2Body( Tb );
126 >        sd->setVel(vel);
127 >        sd->setPos(pos);
128  
129 <      // get the angular momentum, and propagate a half step
129 >        if (sd->isDirectional()) {
130  
131 <      integrableObjects[i]->getJ( ji );
131 >          //convert the torque to body frame
132 >          Tb = sd->lab2Body(sd->getTrq());
133  
134 <      for (j=0; j < 3; j++)
106 <        ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi);
134 >          // get the angular momentum, and propagate a half step
135  
136 <      this->rotationPropagation( integrableObjects[i], ji );
136 >          ji = sd->getJ();
137  
138 <      integrableObjects[i]->setJ( ji );
139 <    }
112 <  }
113 <  
114 <  if(nConstrained)
115 <    constrainA();
138 >          ji += dt2*PhysicalConstants::energyConvert*Tb
139 >            - dt2*thermostat.first *ji;
140  
141 <  // Finally, evolve chi a half step (just like a velocity) using
118 <  // temperature at time t, not time t+dt/2
141 >          rotAlgo_->rotate(sd, ji, dt);
142  
143 <  //std::cerr << "targetTemp = " << targetTemp << " instTemp = " << instTemp << " tauThermostat = " << tauThermostat << " integral of Chi = " << integralOfChidt << "\n";
144 <  
145 <  chi += dt2 * ( instTemp / targetTemp - 1.0) / (tauThermostat*tauThermostat);
123 <  integralOfChidt += chi*dt2;
143 >          sd->setJ(ji);
144 >        }
145 >      }
146  
147 < }
147 >    }
148 >    
149 >    flucQ_->moveA();
150 >    rattle_->constraintA();
151  
152 < template<typename T> void NVT<T>::moveB( void ){
153 <  int i, j, k;
129 <  double Tb[3], ji[3];
130 <  double vel[3], frc[3];
131 <  double mass;
132 <  double instTemp;
133 <  double oldChi, prevChi;
152 >    // Finally, evolve chi a half step (just like a velocity) using
153 >    // temperature at time t, not time t+dt/2
154  
155 <  // Set things up for the iteration:
155 >    thermostat.first += dt2 * (instTemp / targetTemp_ - 1.0)
156 >      / (tauThermostat_ * tauThermostat_);
157 >    thermostat.second += thermostat.first * dt2;
158  
159 <  oldChi = chi;
159 >    snap->setThermostat(thermostat);
160 >  }
161  
162 <  for( i=0; i < integrableObjects.size(); i++ ){
163 <
164 <    integrableObjects[i]->getVel( vel );
165 <
166 <    for (j=0; j < 3; j++)
167 <      oldVel[3*i + j]  = vel[j];
168 <
169 <    if( integrableObjects[i]->isDirectional() ){
170 <
171 <      integrableObjects[i]->getJ( ji );
172 <
173 <      for (j=0; j < 3; j++)
174 <        oldJi[3*i + j] = ji[j];
162 >  void NVT::moveB() {
163 >    SimInfo::MoleculeIterator i;
164 >    Molecule::IntegrableObjectIterator  j;
165 >    Molecule* mol;
166 >    StuntDouble* sd;
167 >    
168 >    Vector3d Tb;
169 >    Vector3d ji;    
170 >    Vector3d vel;
171 >    Vector3d frc;
172 >    RealType mass;
173 >    RealType instTemp;
174 >    int index;
175 >    // Set things up for the iteration:
176  
177 +    pair<RealType, RealType> thermostat = snap->getThermostat();
178 +    RealType oldChi = thermostat.first;
179 +    RealType  prevChi;
180 +
181 +    index = 0;
182 +    for (mol = info_->beginMolecule(i); mol != NULL;
183 +         mol = info_->nextMolecule(i)) {
184 +
185 +      for (sd = mol->beginIntegrableObject(j); sd != NULL;
186 +           sd = mol->nextIntegrableObject(j)) {
187 +
188 +        oldVel_[index] = sd->getVel();
189 +        
190 +        if (sd->isDirectional())
191 +          oldJi_[index] = sd->getJ();                
192 +        
193 +        ++index;    
194 +      }          
195      }
154  }
196  
197 <  // do the iteration:
197 >    // do the iteration:
198  
199 <  for (k=0; k < 4; k++) {
199 >    for(int k = 0; k < maxIterNum_; k++) {
200 >      index = 0;
201 >      instTemp = thermo.getTemperature();
202  
203 <    instTemp = tStats->getTemperature();
203 >      // evolve chi another half step using the temperature at t + dt/2
204  
205 <    // evolve chi another half step using the temperature at t + dt/2
205 >      prevChi = thermostat.first;
206 >      thermostat.first = oldChi + dt2 * (instTemp / targetTemp_ - 1.0)
207 >        / (tauThermostat_ * tauThermostat_);
208  
209 <    prevChi = chi;
210 <    chi = oldChi + dt2 * ( instTemp / targetTemp - 1.0) /
211 <      (tauThermostat*tauThermostat);
209 >      for (mol = info_->beginMolecule(i); mol != NULL;
210 >           mol = info_->nextMolecule(i)) {
211 >        
212 >        for (sd = mol->beginIntegrableObject(j); sd != NULL;
213 >             sd = mol->nextIntegrableObject(j)) {
214  
215 <    for( i=0; i < integrableObjects.size(); i++ ){
215 >          frc = sd->getFrc();
216 >          mass = sd->getMass();
217  
218 <      integrableObjects[i]->getFrc( frc );
171 <      integrableObjects[i]->getVel(vel);
218 >          // velocity half step
219  
220 <      mass = integrableObjects[i]->getMass();
220 >          vel = oldVel_[index]
221 >            + dt2/mass*PhysicalConstants::energyConvert * frc
222 >            - dt2*thermostat.first*oldVel_[index];
223 >            
224 >          sd->setVel(vel);
225  
226 <      // velocity half step
176 <      for (j=0; j < 3; j++)
177 <        vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass ) * eConvert - oldVel[3*i + j]*chi);
226 >          if (sd->isDirectional()) {
227  
228 <      integrableObjects[i]->setVel( vel );
228 >            // get and convert the torque to body frame
229  
230 <      if( integrableObjects[i]->isDirectional() ){
230 >            Tb =  sd->lab2Body(sd->getTrq());
231  
232 <        // get and convert the torque to body frame
232 >            ji = oldJi_[index] + dt2*PhysicalConstants::energyConvert*Tb
233 >              - dt2*thermostat.first *oldJi_[index];
234  
235 <        integrableObjects[i]->getTrq( Tb );
236 <        integrableObjects[i]->lab2Body( Tb );
235 >            sd->setJ(ji);
236 >          }
237  
188        for (j=0; j < 3; j++)
189          ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi);
238  
239 <        integrableObjects[i]->setJ( ji );
239 >          ++index;
240 >        }
241        }
193    }
242      
243 <    if(nConstrained)
196 <      constrainB();
243 >      rattle_->constraintB();
244  
245 <    if (fabs(prevChi - chi) <= chiTolerance) break;
246 <  }
245 >      if (fabs(prevChi - thermostat.first) <= chiTolerance_)
246 >        break;
247  
248 <  integralOfChidt += dt2*chi;
202 < }
248 >    }
249  
250 < template<typename T> void NVT<T>::resetIntegrator( void ){
250 >    flucQ_->moveB();
251  
252 <  chi = 0.0;
253 <  integralOfChidt = 0.0;
208 < }
209 <
210 < template<typename T> int NVT<T>::readyCheck() {
211 <
212 <  //check parent's readyCheck() first
213 <  if (T::readyCheck() == -1)
214 <    return -1;
215 <
216 <  // First check to see if we have a target temperature.
217 <  // Not having one is fatal.
218 <
219 <  if (!have_target_temp) {
220 <    sprintf( painCave.errMsg,
221 <             "You can't use the NVT integrator without a targetTemp!\n"
222 <             );
223 <    painCave.isFatal = 1;
224 <    painCave.severity = OOPSE_ERROR;
225 <    simError();
226 <    return -1;
252 >    thermostat.second += dt2 * thermostat.first;
253 >    snap->setThermostat(thermostat);
254    }
255  
256 <  // We must set tauThermostat.
257 <
231 <  if (!have_tau_thermostat) {
232 <    sprintf( painCave.errMsg,
233 <             "If you use the constant temperature\n"
234 <             "\tintegrator, you must set tauThermostat.\n");
235 <    painCave.severity = OOPSE_ERROR;
236 <    painCave.isFatal = 1;
237 <    simError();
238 <    return -1;
256 >  void NVT::resetIntegrator() {
257 >    snap->setThermostat(make_pair(0.0, 0.0));
258    }
259 +  
260 +  RealType NVT::calcConservedQuantity() {
261  
262 <  if (!have_chi_tolerance) {
263 <    sprintf( painCave.errMsg,
264 <             "In NVT integrator: setting chi tolerance to 1e-6\n");
265 <    chiTolerance = 1e-6;
266 <    have_chi_tolerance = 1;
267 <    painCave.severity = OOPSE_INFO;
268 <    painCave.isFatal = 0;
269 <    simError();
249 <  }
262 >    pair<RealType, RealType> thermostat = snap->getThermostat();
263 >    RealType conservedQuantity;
264 >    RealType fkBT;
265 >    RealType Energy;
266 >    RealType thermostat_kinetic;
267 >    RealType thermostat_potential;
268 >    
269 >    fkBT = info_->getNdf() *PhysicalConstants::kB *targetTemp_;
270  
271 <  return 1;
271 >    Energy = thermo.getTotalEnergy();
272  
273 < }
273 >    thermostat_kinetic = fkBT * tauThermostat_ * tauThermostat_ * thermostat.first * thermostat.first / (2.0 * PhysicalConstants::energyConvert);
274  
275 < template<typename T> double NVT<T>::getConservedQuantity(void){
275 >    thermostat_potential = fkBT * thermostat.second / PhysicalConstants::energyConvert;
276  
277 <  double conservedQuantity;
258 <  double fkBT;
259 <  double Energy;
260 <  double thermostat_kinetic;
261 <  double thermostat_potential;
277 >    conservedQuantity = Energy + thermostat_kinetic + thermostat_potential;
278  
279 <  fkBT = (double)(info->ndf) * kB * targetTemp;
279 >    return conservedQuantity;
280 >  }
281  
265  Energy = tStats->getTotalE();
282  
283 <  thermostat_kinetic = fkBT* tauThermostat * tauThermostat * chi * chi /
268 <    (2.0 * eConvert);
269 <
270 <  thermostat_potential = fkBT * integralOfChidt / eConvert;
271 <
272 <  conservedQuantity = Energy + thermostat_kinetic + thermostat_potential;
273 <
274 <  return conservedQuantity;
275 < }
276 <
277 < template<typename T> string NVT<T>::getAdditionalParameters(void){
278 <  string parameters;
279 <  const int BUFFERSIZE = 2000; // size of the read buffer
280 <  char buffer[BUFFERSIZE];
281 <
282 <  sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt);
283 <  parameters += buffer;
284 <
285 <  return parameters;
286 < }
283 > }//end namespace OpenMD

Comparing trunk/src/integrators/NVT.cpp (property svn:keywords):
Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
Revision 1879 by gezelter, Sun Jun 16 15:15:42 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines