6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
41 |
|
|
42 |
|
#include "integrators/NVT.hpp" |
43 |
|
#include "primitives/Molecule.hpp" |
44 |
|
#include "utils/simError.h" |
45 |
< |
#include "utils/OOPSEConstant.hpp" |
45 |
> |
#include "utils/PhysicalConstants.hpp" |
46 |
|
|
47 |
< |
namespace oopse { |
47 |
> |
namespace OpenMD { |
48 |
|
|
49 |
|
NVT::NVT(SimInfo* info) : VelocityVerletIntegrator(info), chiTolerance_ (1e-6), maxIterNum_(4) { |
50 |
|
|
59 |
|
if (!simParams->haveTargetTemp()) { |
60 |
|
sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp_!\n"); |
61 |
|
painCave.isFatal = 1; |
62 |
< |
painCave.severity = OOPSE_ERROR; |
62 |
> |
painCave.severity = OPENMD_ERROR; |
63 |
|
simError(); |
64 |
|
} else { |
65 |
|
targetTemp_ = simParams->getTargetTemp(); |
66 |
|
} |
67 |
|
|
68 |
< |
// We must set tauThermostat_. |
68 |
> |
// We must set tauThermostat. |
69 |
|
|
70 |
|
if (!simParams->haveTauThermostat()) { |
71 |
|
sprintf(painCave.errMsg, "If you use the constant temperature\n" |
72 |
< |
"\tintegrator, you must set tauThermostat_.\n"); |
72 |
> |
"\tintegrator, you must set tauThermostat.\n"); |
73 |
|
|
74 |
< |
painCave.severity = OOPSE_ERROR; |
74 |
> |
painCave.severity = OPENMD_ERROR; |
75 |
|
painCave.isFatal = 1; |
76 |
|
simError(); |
77 |
|
} else { |
115 |
|
mass = integrableObject->getMass(); |
116 |
|
|
117 |
|
// velocity half step (use chi from previous step here): |
118 |
< |
//vel[j] += dt2 * ((frc[j] / mass ) * OOPSEConstant::energyConvert - vel[j]*chi); |
119 |
< |
vel += dt2 *OOPSEConstant::energyConvert/mass*frc - dt2*chi*vel; |
118 |
> |
//vel[j] += dt2 * ((frc[j] / mass ) * PhysicalConstants::energyConvert - vel[j]*chi); |
119 |
> |
vel += dt2 *PhysicalConstants::energyConvert/mass*frc - dt2*chi*vel; |
120 |
|
|
121 |
|
// position whole step |
122 |
|
//pos[j] += dt * vel[j]; |
134 |
|
|
135 |
|
ji = integrableObject->getJ(); |
136 |
|
|
137 |
< |
//ji[j] += dt2 * (Tb[j] * OOPSEConstant::energyConvert - ji[j]*chi); |
138 |
< |
ji += dt2*OOPSEConstant::energyConvert*Tb - dt2*chi *ji; |
137 |
> |
//ji[j] += dt2 * (Tb[j] * PhysicalConstants::energyConvert - ji[j]*chi); |
138 |
> |
ji += dt2*PhysicalConstants::energyConvert*Tb - dt2*chi *ji; |
139 |
|
rotAlgo->rotate(integrableObject, ji, dt); |
140 |
|
|
141 |
|
integrableObject->setJ(ji); |
211 |
|
|
212 |
|
// velocity half step |
213 |
|
//for(j = 0; j < 3; j++) |
214 |
< |
// vel[j] = oldVel_[3*i+j] + dt2 * ((frc[j] / mass ) * OOPSEConstant::energyConvert - oldVel_[3*i + j]*chi); |
215 |
< |
vel = oldVel_[index] + dt2/mass*OOPSEConstant::energyConvert * frc - dt2*chi*oldVel_[index]; |
214 |
> |
// vel[j] = oldVel_[3*i+j] + dt2 * ((frc[j] / mass ) * PhysicalConstants::energyConvert - oldVel_[3*i + j]*chi); |
215 |
> |
vel = oldVel_[index] + dt2/mass*PhysicalConstants::energyConvert * frc - dt2*chi*oldVel_[index]; |
216 |
|
|
217 |
|
integrableObject->setVel(vel); |
218 |
|
|
223 |
|
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
224 |
|
|
225 |
|
//for(j = 0; j < 3; j++) |
226 |
< |
// ji[j] = oldJi_[3*i + j] + dt2 * (Tb[j] * OOPSEConstant::energyConvert - oldJi_[3*i+j]*chi); |
227 |
< |
ji = oldJi_[index] + dt2*OOPSEConstant::energyConvert*Tb - dt2*chi *oldJi_[index]; |
226 |
> |
// ji[j] = oldJi_[3*i + j] + dt2 * (Tb[j] * PhysicalConstants::energyConvert - oldJi_[3*i+j]*chi); |
227 |
> |
ji = oldJi_[index] + dt2*PhysicalConstants::energyConvert*Tb - dt2*chi *oldJi_[index]; |
228 |
|
|
229 |
|
integrableObject->setJ(ji); |
230 |
|
} |
263 |
|
RealType thermostat_kinetic; |
264 |
|
RealType thermostat_potential; |
265 |
|
|
266 |
< |
fkBT = info_->getNdf() *OOPSEConstant::kB *targetTemp_; |
266 |
> |
fkBT = info_->getNdf() *PhysicalConstants::kB *targetTemp_; |
267 |
|
|
268 |
|
Energy = thermo.getTotalE(); |
269 |
|
|
270 |
< |
thermostat_kinetic = fkBT * tauThermostat_ * tauThermostat_ * chi * chi / (2.0 * OOPSEConstant::energyConvert); |
270 |
> |
thermostat_kinetic = fkBT * tauThermostat_ * tauThermostat_ * chi * chi / (2.0 * PhysicalConstants::energyConvert); |
271 |
|
|
272 |
< |
thermostat_potential = fkBT * integralOfChidt / OOPSEConstant::energyConvert; |
272 |
> |
thermostat_potential = fkBT * integralOfChidt / PhysicalConstants::energyConvert; |
273 |
|
|
274 |
|
conservedQuantity = Energy + thermostat_kinetic + thermostat_potential; |
275 |
|
|
277 |
|
} |
278 |
|
|
279 |
|
|
280 |
< |
}//end namespace oopse |
280 |
> |
}//end namespace OpenMD |