--- trunk/src/integrators/NPrT.cpp 2006/03/31 18:09:22 927 +++ trunk/src/integrators/NPrT.cpp 2010/05/10 17:28:26 1442 @@ -6,19 +6,10 @@ * redistribute this software in source and binary code form, provided * that the following conditions are met: * - * 1. Acknowledgement of the program authors must be made in any - * publication of scientific results based in part on use of the - * program. An acceptable form of acknowledgement is citation of - * the article in which the program was described (Matthew - * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher - * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented - * Parallel Simulation Engine for Molecular Dynamics," - * J. Comput. Chem. 26, pp. 252-271 (2005)) - * - * 2. Redistributions of source code must retain the above copyright + * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - * 3. Redistributions in binary form must reproduce the above copyright + * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the * distribution. @@ -37,6 +28,15 @@ * arising out of the use of or inability to use software, even if the * University of Notre Dame has been advised of the possibility of * such damages. + * + * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your + * research, please cite the appropriate papers when you publish your + * work. Good starting points are: + * + * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). + * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). + * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). + * [4] Vardeman & Gezelter, in progress (2009). */ #include "brains/SimInfo.hpp" @@ -44,46 +44,46 @@ #include "integrators/IntegratorCreator.hpp" #include "integrators/NPrT.hpp" #include "primitives/Molecule.hpp" -#include "utils/OOPSEConstant.hpp" +#include "utils/PhysicalConstants.hpp" #include "utils/simError.h" -namespace oopse { +namespace OpenMD { NPrT::NPrT(SimInfo* info) : NPT(info) { Globals* simParams = info_->getSimParams(); if (!simParams->haveSurfaceTension()) { sprintf(painCave.errMsg, "If you use the NPT integrator, you must set tauBarostat.\n"); - painCave.severity = OOPSE_ERROR; + painCave.severity = OPENMD_ERROR; painCave.isFatal = 1; simError(); } else { - surfaceTension= simParams->getSurfaceTension()* OOPSEConstant::surfaceTensorConvert * OOPSEConstant::energyConvert; + surfaceTension= simParams->getSurfaceTension()* PhysicalConstants::surfaceTensionConvert * PhysicalConstants::energyConvert; } } void NPrT::evolveEtaA() { Mat3x3d hmat = currentSnapshot_->getHmat(); - double hz = hmat(2, 2); - double Axy = hmat(0,0) * hmat(1, 1); - double sx = -hz * (press(0, 0) - targetPressure/OOPSEConstant::pressureConvert); - double sy = -hz * (press(1, 1) - targetPressure/OOPSEConstant::pressureConvert); + RealType hz = hmat(2, 2); + RealType Axy = hmat(0,0) * hmat(1, 1); + RealType sx = -hz * (press(0, 0) - targetPressure/PhysicalConstants::pressureConvert); + RealType sy = -hz * (press(1, 1) - targetPressure/PhysicalConstants::pressureConvert); eta(0,0) -= dt2* Axy * (sx - surfaceTension) / (NkBT*tb2); eta(1,1) -= dt2* Axy * (sy - surfaceTension) / (NkBT*tb2); - eta(2,2) += dt2 * instaVol * (press(2, 2) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); + eta(2,2) += dt2 * instaVol * (press(2, 2) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); oldEta = eta; } void NPrT::evolveEtaB() { Mat3x3d hmat = currentSnapshot_->getHmat(); - double hz = hmat(2, 2); - double Axy = hmat(0,0) * hmat(1, 1); + RealType hz = hmat(2, 2); + RealType Axy = hmat(0,0) * hmat(1, 1); prevEta = eta; - double sx = -hz * (press(0, 0) - targetPressure/OOPSEConstant::pressureConvert); - double sy = -hz * (press(1, 1) - targetPressure/OOPSEConstant::pressureConvert); + RealType sx = -hz * (press(0, 0) - targetPressure/PhysicalConstants::pressureConvert); + RealType sy = -hz * (press(1, 1) - targetPressure/PhysicalConstants::pressureConvert); eta(0,0) = oldEta(0, 0) - dt2 * Axy * (sx -surfaceTension) / (NkBT*tb2); eta(1,1) = oldEta(1, 1) - dt2 * Axy * (sy -surfaceTension) / (NkBT*tb2); eta(2,2) = oldEta(2, 2) + dt2 * instaVol * - (press(2, 2) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); + (press(2, 2) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); } void NPrT::calcVelScale(){ @@ -110,7 +110,7 @@ namespace oopse { void NPrT::getPosScale(const Vector3d& pos, const Vector3d& COM, int index, Vector3d& sc) { /**@todo */ - Vector3d rj = (oldPos[index] + pos)/2.0 -COM; + Vector3d rj = (oldPos[index] + pos)/(RealType)2.0 -COM; sc = eta * rj; } @@ -128,7 +128,7 @@ namespace oopse { bool NPrT::etaConverged() { int i; - double diffEta, sumEta; + RealType diffEta, sumEta; sumEta = 0; for(i = 0; i < 3; i++) { @@ -140,7 +140,7 @@ namespace oopse { return ( diffEta <= etaTolerance ); } - double NPrT::calcConservedQuantity(){ + RealType NPrT::calcConservedQuantity(){ chi= currentSnapshot_->getChi(); integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); @@ -149,33 +149,33 @@ namespace oopse { // We need NkBT a lot, so just set it here: This is the RAW number // of integrableObjects, so no subtraction or addition of constraints or // orientational degrees of freedom: - NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp; + NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp; // fkBT is used because the thermostat operates on more degrees of freedom // than the barostat (when there are particles with orientational degrees // of freedom). - fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp; + fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp; - double totalEnergy = thermo.getTotalE(); + RealType totalEnergy = thermo.getTotalE(); - double thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert); + RealType thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * PhysicalConstants::energyConvert); - double thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; + RealType thermostat_potential = fkBT* integralOfChidt / PhysicalConstants::energyConvert; - SquareMatrix tmp = eta.transpose() * eta; - double trEta = tmp.trace(); + SquareMatrix tmp = eta.transpose() * eta; + RealType trEta = tmp.trace(); - double barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert); + RealType barostat_kinetic = NkBT * tb2 * trEta /(2.0 * PhysicalConstants::energyConvert); - double barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert; + RealType barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) /PhysicalConstants::energyConvert; Mat3x3d hmat = currentSnapshot_->getHmat(); - double hz = hmat(2, 2); - double area = hmat(0,0) * hmat(1, 1); + RealType hz = hmat(2, 2); + RealType area = hmat(0,0) * hmat(1, 1); - double conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + - barostat_kinetic + barostat_potential - surfaceTension * area/ OOPSEConstant::energyConvert; + RealType conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + + barostat_kinetic + barostat_potential - surfaceTension * area/ PhysicalConstants::energyConvert; return conservedQuantity;