50 |
|
namespace oopse { |
51 |
|
NPrT::NPrT(SimInfo* info) : NPT(info) { |
52 |
|
Globals* simParams = info_->getSimParams(); |
53 |
< |
if (!simParams->haveTargetStress()) |
53 |
> |
if (!simParams->haveSurfaceTension()) { |
54 |
|
sprintf(painCave.errMsg, |
55 |
|
"If you use the NPT integrator, you must set tauBarostat.\n"); |
56 |
|
painCave.severity = OOPSE_ERROR; |
57 |
|
painCave.isFatal = 1; |
58 |
|
simError(); |
59 |
|
} else { |
60 |
< |
targetStress= simParams->getTargetStress(); |
60 |
> |
surfaceTension= simParams->getSurfaceTension()* OOPSEConstant::surfaceTensorConvert * OOPSEConstant::energyConvert; |
61 |
|
} |
62 |
|
|
63 |
|
} |
64 |
|
void NPrT::evolveEtaA() { |
65 |
< |
double sx = -hz * (press(0, 0) - targetPressure/OOPSEConstant::pressureConvert); |
66 |
< |
double sy = -hz * (press(1, 1) - targetPressure/OOPSEConstant::pressureConvert); |
67 |
< |
eta(0,0) -= Axy * (sx - targetStress) / (NkBT*tb2); |
68 |
< |
eta(1,1) -= Axy * (sy - targetStress) / (NkBT*tb2); |
65 |
> |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
66 |
> |
RealType hz = hmat(2, 2); |
67 |
> |
RealType Axy = hmat(0,0) * hmat(1, 1); |
68 |
> |
RealType sx = -hz * (press(0, 0) - targetPressure/OOPSEConstant::pressureConvert); |
69 |
> |
RealType sy = -hz * (press(1, 1) - targetPressure/OOPSEConstant::pressureConvert); |
70 |
> |
eta(0,0) -= dt2* Axy * (sx - surfaceTension) / (NkBT*tb2); |
71 |
> |
eta(1,1) -= dt2* Axy * (sy - surfaceTension) / (NkBT*tb2); |
72 |
|
eta(2,2) += dt2 * instaVol * (press(2, 2) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); |
73 |
|
oldEta = eta; |
74 |
|
} |
75 |
|
|
76 |
|
void NPrT::evolveEtaB() { |
77 |
< |
|
77 |
> |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
78 |
> |
RealType hz = hmat(2, 2); |
79 |
> |
RealType Axy = hmat(0,0) * hmat(1, 1); |
80 |
|
prevEta = eta; |
81 |
< |
double sx = -hz * (press(0, 0) - targetPressure/OOPSEConstant::pressureConvert); |
82 |
< |
double sy = -hz * (press(1, 1) - targetPressure/OOPSEConstant::pressureConvert); |
83 |
< |
eta(0,0) -= Axy * (sx -targetStress) / (NkBT*tb2); |
84 |
< |
eta(1,1) -= Axy * (sy -targetStress) / (NkBT*tb2); |
81 |
> |
RealType sx = -hz * (press(0, 0) - targetPressure/OOPSEConstant::pressureConvert); |
82 |
> |
RealType sy = -hz * (press(1, 1) - targetPressure/OOPSEConstant::pressureConvert); |
83 |
> |
eta(0,0) = oldEta(0, 0) - dt2 * Axy * (sx -surfaceTension) / (NkBT*tb2); |
84 |
> |
eta(1,1) = oldEta(1, 1) - dt2 * Axy * (sy -surfaceTension) / (NkBT*tb2); |
85 |
|
eta(2,2) = oldEta(2, 2) + dt2 * instaVol * |
86 |
|
(press(2, 2) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); |
87 |
|
} |
110 |
|
void NPrT::getPosScale(const Vector3d& pos, const Vector3d& COM, int index, Vector3d& sc) { |
111 |
|
|
112 |
|
/**@todo */ |
113 |
< |
Vector3d rj = (oldPos[index] + pos)/2.0 -COM; |
113 |
> |
Vector3d rj = (oldPos[index] + pos)/(RealType)2.0 -COM; |
114 |
|
sc = eta * rj; |
115 |
|
} |
116 |
|
|
117 |
|
void NPrT::scaleSimBox(){ |
113 |
– |
|
114 |
– |
int i; |
115 |
– |
int j; |
116 |
– |
int k; |
118 |
|
Mat3x3d scaleMat; |
118 |
– |
double eta2ij; |
119 |
– |
double bigScale, smallScale, offDiagMax; |
120 |
– |
Mat3x3d hm; |
121 |
– |
Mat3x3d hmnew; |
119 |
|
|
120 |
+ |
scaleMat(0, 0) = exp(dt*eta(0, 0)); |
121 |
+ |
scaleMat(1, 1) = exp(dt*eta(1, 1)); |
122 |
+ |
scaleMat(2, 2) = exp(dt*eta(2, 2)); |
123 |
+ |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
124 |
+ |
hmat = hmat *scaleMat; |
125 |
+ |
currentSnapshot_->setHmat(hmat); |
126 |
|
|
124 |
– |
|
125 |
– |
// Scale the box after all the positions have been moved: |
126 |
– |
|
127 |
– |
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
128 |
– |
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
129 |
– |
|
130 |
– |
bigScale = 1.0; |
131 |
– |
smallScale = 1.0; |
132 |
– |
offDiagMax = 0.0; |
133 |
– |
|
134 |
– |
for(i=0; i<3; i++){ |
135 |
– |
for(j=0; j<3; j++){ |
136 |
– |
|
137 |
– |
// Calculate the matrix Product of the eta array (we only need |
138 |
– |
// the ij element right now): |
139 |
– |
|
140 |
– |
eta2ij = 0.0; |
141 |
– |
for(k=0; k<3; k++){ |
142 |
– |
eta2ij += eta(i, k) * eta(k, j); |
143 |
– |
} |
144 |
– |
|
145 |
– |
scaleMat(i, j) = 0.0; |
146 |
– |
// identity matrix (see above): |
147 |
– |
if (i == j) scaleMat(i, j) = 1.0; |
148 |
– |
// Taylor expansion for the exponential truncated at second order: |
149 |
– |
scaleMat(i, j) += dt*eta(i, j) + 0.5*dt*dt*eta2ij; |
150 |
– |
|
151 |
– |
|
152 |
– |
if (i != j) |
153 |
– |
if (fabs(scaleMat(i, j)) > offDiagMax) |
154 |
– |
offDiagMax = fabs(scaleMat(i, j)); |
155 |
– |
} |
156 |
– |
|
157 |
– |
if (scaleMat(i, i) > bigScale) bigScale = scaleMat(i, i); |
158 |
– |
if (scaleMat(i, i) < smallScale) smallScale = scaleMat(i, i); |
159 |
– |
} |
160 |
– |
|
161 |
– |
if ((bigScale > 1.01) || (smallScale < 0.99)) { |
162 |
– |
sprintf( painCave.errMsg, |
163 |
– |
"NPrT error: Attempting a Box scaling of more than 1 percent.\n" |
164 |
– |
" Check your tauBarostat, as it is probably too small!\n\n" |
165 |
– |
" scaleMat = [%lf\t%lf\t%lf]\n" |
166 |
– |
" [%lf\t%lf\t%lf]\n" |
167 |
– |
" [%lf\t%lf\t%lf]\n" |
168 |
– |
" eta = [%lf\t%lf\t%lf]\n" |
169 |
– |
" [%lf\t%lf\t%lf]\n" |
170 |
– |
" [%lf\t%lf\t%lf]\n", |
171 |
– |
scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), |
172 |
– |
scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), |
173 |
– |
scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2), |
174 |
– |
eta(0, 0),eta(0, 1),eta(0, 2), |
175 |
– |
eta(1, 0),eta(1, 1),eta(1, 2), |
176 |
– |
eta(2, 0),eta(2, 1),eta(2, 2)); |
177 |
– |
painCave.isFatal = 1; |
178 |
– |
simError(); |
179 |
– |
} else if (offDiagMax > 0.01) { |
180 |
– |
sprintf( painCave.errMsg, |
181 |
– |
"NPrT error: Attempting an off-diagonal Box scaling of more than 1 percent.\n" |
182 |
– |
" Check your tauBarostat, as it is probably too small!\n\n" |
183 |
– |
" scaleMat = [%lf\t%lf\t%lf]\n" |
184 |
– |
" [%lf\t%lf\t%lf]\n" |
185 |
– |
" [%lf\t%lf\t%lf]\n" |
186 |
– |
" eta = [%lf\t%lf\t%lf]\n" |
187 |
– |
" [%lf\t%lf\t%lf]\n" |
188 |
– |
" [%lf\t%lf\t%lf]\n", |
189 |
– |
scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), |
190 |
– |
scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), |
191 |
– |
scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2), |
192 |
– |
eta(0, 0),eta(0, 1),eta(0, 2), |
193 |
– |
eta(1, 0),eta(1, 1),eta(1, 2), |
194 |
– |
eta(2, 0),eta(2, 1),eta(2, 2)); |
195 |
– |
painCave.isFatal = 1; |
196 |
– |
simError(); |
197 |
– |
} else { |
198 |
– |
|
199 |
– |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
200 |
– |
hmat = hmat *scaleMat; |
201 |
– |
currentSnapshot_->setHmat(hmat); |
202 |
– |
|
203 |
– |
} |
127 |
|
} |
128 |
|
|
129 |
|
bool NPrT::etaConverged() { |
130 |
|
int i; |
131 |
< |
double diffEta, sumEta; |
131 |
> |
RealType diffEta, sumEta; |
132 |
|
|
133 |
|
sumEta = 0; |
134 |
|
for(i = 0; i < 3; i++) { |
140 |
|
return ( diffEta <= etaTolerance ); |
141 |
|
} |
142 |
|
|
143 |
< |
double NPrT::calcConservedQuantity(){ |
143 |
> |
RealType NPrT::calcConservedQuantity(){ |
144 |
|
|
145 |
|
chi= currentSnapshot_->getChi(); |
146 |
|
integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
156 |
|
// of freedom). |
157 |
|
fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp; |
158 |
|
|
236 |
– |
double conservedQuantity; |
237 |
– |
double totalEnergy; |
238 |
– |
double thermostat_kinetic; |
239 |
– |
double thermostat_potential; |
240 |
– |
double barostat_kinetic; |
241 |
– |
double barostat_potential; |
242 |
– |
double trEta; |
159 |
|
|
160 |
< |
totalEnergy = thermo.getTotalE(); |
160 |
> |
RealType totalEnergy = thermo.getTotalE(); |
161 |
|
|
162 |
< |
thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert); |
162 |
> |
RealType thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert); |
163 |
|
|
164 |
< |
thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; |
164 |
> |
RealType thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; |
165 |
|
|
166 |
< |
SquareMatrix<double, 3> tmp = eta.transpose() * eta; |
167 |
< |
trEta = tmp.trace(); |
166 |
> |
SquareMatrix<RealType, 3> tmp = eta.transpose() * eta; |
167 |
> |
RealType trEta = tmp.trace(); |
168 |
|
|
169 |
< |
barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert); |
169 |
> |
RealType barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert); |
170 |
|
|
171 |
< |
barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert; |
171 |
> |
RealType barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert; |
172 |
|
|
173 |
< |
conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
174 |
< |
barostat_kinetic + barostat_potential; |
173 |
> |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
174 |
> |
RealType hz = hmat(2, 2); |
175 |
> |
RealType area = hmat(0,0) * hmat(1, 1); |
176 |
|
|
177 |
+ |
RealType conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
178 |
+ |
barostat_kinetic + barostat_potential - surfaceTension * area/ OOPSEConstant::energyConvert; |
179 |
+ |
|
180 |
|
return conservedQuantity; |
181 |
|
|
182 |
|
} |