6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
41 |
|
|
42 |
|
#include "brains/SimInfo.hpp" |
44 |
|
#include "integrators/IntegratorCreator.hpp" |
45 |
|
#include "integrators/NPrT.hpp" |
46 |
|
#include "primitives/Molecule.hpp" |
47 |
< |
#include "utils/OOPSEConstant.hpp" |
47 |
> |
#include "utils/PhysicalConstants.hpp" |
48 |
|
#include "utils/simError.h" |
49 |
|
|
50 |
< |
namespace oopse { |
50 |
> |
namespace OpenMD { |
51 |
|
NPrT::NPrT(SimInfo* info) : NPT(info) { |
52 |
|
Globals* simParams = info_->getSimParams(); |
53 |
|
if (!simParams->haveSurfaceTension()) { |
54 |
|
sprintf(painCave.errMsg, |
55 |
|
"If you use the NPT integrator, you must set tauBarostat.\n"); |
56 |
< |
painCave.severity = OOPSE_ERROR; |
56 |
> |
painCave.severity = OPENMD_ERROR; |
57 |
|
painCave.isFatal = 1; |
58 |
|
simError(); |
59 |
|
} else { |
60 |
< |
surfaceTension= simParams->getSurfaceTension(); |
60 |
> |
surfaceTension= simParams->getSurfaceTension()* PhysicalConstants::surfaceTensionConvert * PhysicalConstants::energyConvert; |
61 |
|
} |
62 |
|
|
63 |
|
} |
64 |
|
void NPrT::evolveEtaA() { |
65 |
|
Mat3x3d hmat = currentSnapshot_->getHmat(); |
66 |
< |
double hz = hmat(2, 2); |
67 |
< |
double Axy = hmat(0,0) * hmat(1, 1); |
68 |
< |
double sx = -hz * (press(0, 0) - targetPressure/OOPSEConstant::pressureConvert); |
69 |
< |
double sy = -hz * (press(1, 1) - targetPressure/OOPSEConstant::pressureConvert); |
70 |
< |
eta(0,0) -= Axy * (sx - surfaceTension) / (NkBT*tb2); |
71 |
< |
eta(1,1) -= Axy * (sy - surfaceTension) / (NkBT*tb2); |
72 |
< |
eta(2,2) += dt2 * instaVol * (press(2, 2) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); |
66 |
> |
RealType hz = hmat(2, 2); |
67 |
> |
RealType Axy = hmat(0,0) * hmat(1, 1); |
68 |
> |
RealType sx = -hz * (press(0, 0) - targetPressure/PhysicalConstants::pressureConvert); |
69 |
> |
RealType sy = -hz * (press(1, 1) - targetPressure/PhysicalConstants::pressureConvert); |
70 |
> |
eta(0,0) -= dt2* Axy * (sx - surfaceTension) / (NkBT*tb2); |
71 |
> |
eta(1,1) -= dt2* Axy * (sy - surfaceTension) / (NkBT*tb2); |
72 |
> |
eta(2,2) += dt2 * instaVol * (press(2, 2) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); |
73 |
|
oldEta = eta; |
74 |
|
} |
75 |
|
|
76 |
|
void NPrT::evolveEtaB() { |
77 |
|
Mat3x3d hmat = currentSnapshot_->getHmat(); |
78 |
< |
double hz = hmat(2, 2); |
79 |
< |
double Axy = hmat(0,0) * hmat(1, 1); |
78 |
> |
RealType hz = hmat(2, 2); |
79 |
> |
RealType Axy = hmat(0,0) * hmat(1, 1); |
80 |
|
prevEta = eta; |
81 |
< |
double sx = -hz * (press(0, 0) - targetPressure/OOPSEConstant::pressureConvert); |
82 |
< |
double sy = -hz * (press(1, 1) - targetPressure/OOPSEConstant::pressureConvert); |
83 |
< |
eta(0,0) = oldEta(0, 0) - Axy * (sx -surfaceTension) / (NkBT*tb2); |
84 |
< |
eta(1,1) = oldEta(1, 1) - Axy * (sy -surfaceTension) / (NkBT*tb2); |
81 |
> |
RealType sx = -hz * (press(0, 0) - targetPressure/PhysicalConstants::pressureConvert); |
82 |
> |
RealType sy = -hz * (press(1, 1) - targetPressure/PhysicalConstants::pressureConvert); |
83 |
> |
eta(0,0) = oldEta(0, 0) - dt2 * Axy * (sx -surfaceTension) / (NkBT*tb2); |
84 |
> |
eta(1,1) = oldEta(1, 1) - dt2 * Axy * (sy -surfaceTension) / (NkBT*tb2); |
85 |
|
eta(2,2) = oldEta(2, 2) + dt2 * instaVol * |
86 |
< |
(press(2, 2) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); |
86 |
> |
(press(2, 2) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); |
87 |
|
} |
88 |
|
|
89 |
|
void NPrT::calcVelScale(){ |
110 |
|
void NPrT::getPosScale(const Vector3d& pos, const Vector3d& COM, int index, Vector3d& sc) { |
111 |
|
|
112 |
|
/**@todo */ |
113 |
< |
Vector3d rj = (oldPos[index] + pos)/2.0 -COM; |
113 |
> |
Vector3d rj = (oldPos[index] + pos)/(RealType)2.0 -COM; |
114 |
|
sc = eta * rj; |
115 |
|
} |
116 |
|
|
128 |
|
|
129 |
|
bool NPrT::etaConverged() { |
130 |
|
int i; |
131 |
< |
double diffEta, sumEta; |
131 |
> |
RealType diffEta, sumEta; |
132 |
|
|
133 |
|
sumEta = 0; |
134 |
|
for(i = 0; i < 3; i++) { |
140 |
|
return ( diffEta <= etaTolerance ); |
141 |
|
} |
142 |
|
|
143 |
< |
double NPrT::calcConservedQuantity(){ |
143 |
> |
RealType NPrT::calcConservedQuantity(){ |
144 |
|
|
145 |
|
chi= currentSnapshot_->getChi(); |
146 |
|
integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
149 |
|
// We need NkBT a lot, so just set it here: This is the RAW number |
150 |
|
// of integrableObjects, so no subtraction or addition of constraints or |
151 |
|
// orientational degrees of freedom: |
152 |
< |
NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp; |
152 |
> |
NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp; |
153 |
|
|
154 |
|
// fkBT is used because the thermostat operates on more degrees of freedom |
155 |
|
// than the barostat (when there are particles with orientational degrees |
156 |
|
// of freedom). |
157 |
< |
fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp; |
157 |
> |
fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp; |
158 |
|
|
159 |
|
|
160 |
< |
double totalEnergy = thermo.getTotalE(); |
160 |
> |
RealType totalEnergy = thermo.getTotalE(); |
161 |
|
|
162 |
< |
double thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert); |
162 |
> |
RealType thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * PhysicalConstants::energyConvert); |
163 |
|
|
164 |
< |
double thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; |
164 |
> |
RealType thermostat_potential = fkBT* integralOfChidt / PhysicalConstants::energyConvert; |
165 |
|
|
166 |
< |
SquareMatrix<double, 3> tmp = eta.transpose() * eta; |
167 |
< |
double trEta = tmp.trace(); |
166 |
> |
SquareMatrix<RealType, 3> tmp = eta.transpose() * eta; |
167 |
> |
RealType trEta = tmp.trace(); |
168 |
|
|
169 |
< |
double barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert); |
169 |
> |
RealType barostat_kinetic = NkBT * tb2 * trEta /(2.0 * PhysicalConstants::energyConvert); |
170 |
|
|
171 |
< |
double barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert; |
171 |
> |
RealType barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) /PhysicalConstants::energyConvert; |
172 |
|
|
173 |
|
Mat3x3d hmat = currentSnapshot_->getHmat(); |
174 |
< |
double hz = hmat(2, 2); |
175 |
< |
double area = hmat(0,0) * hmat(1, 1); |
174 |
> |
RealType hz = hmat(2, 2); |
175 |
> |
RealType area = hmat(0,0) * hmat(1, 1); |
176 |
|
|
177 |
< |
double conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
178 |
< |
barostat_kinetic + barostat_potential - surfaceTension * area; |
177 |
> |
RealType conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
178 |
> |
barostat_kinetic + barostat_potential - surfaceTension * area/ PhysicalConstants::energyConvert; |
179 |
|
|
180 |
|
return conservedQuantity; |
181 |
|
|