1 |
tim |
536 |
/* |
2 |
|
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
* |
4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
|
|
* 1. Acknowledgement of the program authors must be made in any |
10 |
|
|
* publication of scientific results based in part on use of the |
11 |
|
|
* program. An acceptable form of acknowledgement is citation of |
12 |
|
|
* the article in which the program was described (Matthew |
13 |
|
|
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
|
|
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
|
|
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
|
|
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
|
|
* |
18 |
|
|
* 2. Redistributions of source code must retain the above copyright |
19 |
|
|
* notice, this list of conditions and the following disclaimer. |
20 |
|
|
* |
21 |
|
|
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
|
|
* notice, this list of conditions and the following disclaimer in the |
23 |
|
|
* documentation and/or other materials provided with the |
24 |
|
|
* distribution. |
25 |
|
|
* |
26 |
|
|
* This software is provided "AS IS," without a warranty of any |
27 |
|
|
* kind. All express or implied conditions, representations and |
28 |
|
|
* warranties, including any implied warranty of merchantability, |
29 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
30 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
31 |
|
|
* be liable for any damages suffered by licensee as a result of |
32 |
|
|
* using, modifying or distributing the software or its |
33 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
34 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
35 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
36 |
|
|
* damages, however caused and regardless of the theory of liability, |
37 |
|
|
* arising out of the use of or inability to use software, even if the |
38 |
|
|
* University of Notre Dame has been advised of the possibility of |
39 |
|
|
* such damages. |
40 |
|
|
*/ |
41 |
|
|
|
42 |
|
|
#include "brains/SimInfo.hpp" |
43 |
|
|
#include "brains/Thermo.hpp" |
44 |
|
|
#include "integrators/IntegratorCreator.hpp" |
45 |
|
|
#include "integrators/NPrT.hpp" |
46 |
|
|
#include "primitives/Molecule.hpp" |
47 |
|
|
#include "utils/OOPSEConstant.hpp" |
48 |
|
|
#include "utils/simError.h" |
49 |
|
|
|
50 |
|
|
namespace oopse { |
51 |
|
|
NPrT::NPrT(SimInfo* info) : NPT(info) { |
52 |
|
|
Globals* simParams = info_->getSimParams(); |
53 |
tim |
538 |
if (!simParams->haveSurfaceTension()) { |
54 |
tim |
536 |
sprintf(painCave.errMsg, |
55 |
|
|
"If you use the NPT integrator, you must set tauBarostat.\n"); |
56 |
|
|
painCave.severity = OOPSE_ERROR; |
57 |
|
|
painCave.isFatal = 1; |
58 |
|
|
simError(); |
59 |
|
|
} else { |
60 |
tim |
538 |
surfaceTension= simParams->getSurfaceTension(); |
61 |
tim |
536 |
} |
62 |
|
|
|
63 |
|
|
} |
64 |
|
|
void NPrT::evolveEtaA() { |
65 |
tim |
537 |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
66 |
|
|
double hz = hmat(2, 2); |
67 |
|
|
double Axy = hmat(0,0) * hmat(1, 1); |
68 |
tim |
536 |
double sx = -hz * (press(0, 0) - targetPressure/OOPSEConstant::pressureConvert); |
69 |
|
|
double sy = -hz * (press(1, 1) - targetPressure/OOPSEConstant::pressureConvert); |
70 |
tim |
538 |
eta(0,0) -= Axy * (sx - surfaceTension) / (NkBT*tb2); |
71 |
|
|
eta(1,1) -= Axy * (sy - surfaceTension) / (NkBT*tb2); |
72 |
tim |
536 |
eta(2,2) += dt2 * instaVol * (press(2, 2) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); |
73 |
|
|
oldEta = eta; |
74 |
|
|
} |
75 |
|
|
|
76 |
|
|
void NPrT::evolveEtaB() { |
77 |
tim |
537 |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
78 |
|
|
double hz = hmat(2, 2); |
79 |
|
|
double Axy = hmat(0,0) * hmat(1, 1); |
80 |
tim |
536 |
prevEta = eta; |
81 |
|
|
double sx = -hz * (press(0, 0) - targetPressure/OOPSEConstant::pressureConvert); |
82 |
|
|
double sy = -hz * (press(1, 1) - targetPressure/OOPSEConstant::pressureConvert); |
83 |
tim |
538 |
eta(0,0) = oldEta(0, 0) - Axy * (sx -surfaceTension) / (NkBT*tb2); |
84 |
|
|
eta(1,1) = oldEta(1, 1) - Axy * (sy -surfaceTension) / (NkBT*tb2); |
85 |
tim |
536 |
eta(2,2) = oldEta(2, 2) + dt2 * instaVol * |
86 |
|
|
(press(2, 2) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); |
87 |
|
|
} |
88 |
|
|
|
89 |
|
|
void NPrT::calcVelScale(){ |
90 |
|
|
|
91 |
|
|
for (int i = 0; i < 3; i++ ) { |
92 |
|
|
for (int j = 0; j < 3; j++ ) { |
93 |
|
|
vScale(i, j) = eta(i, j); |
94 |
|
|
|
95 |
|
|
if (i == j) { |
96 |
|
|
vScale(i, j) += chi; |
97 |
|
|
} |
98 |
|
|
} |
99 |
|
|
} |
100 |
|
|
} |
101 |
|
|
|
102 |
|
|
void NPrT::getVelScaleA(Vector3d& sc, const Vector3d& vel){ |
103 |
|
|
sc = vScale * vel; |
104 |
|
|
} |
105 |
|
|
|
106 |
|
|
void NPrT::getVelScaleB(Vector3d& sc, int index ) { |
107 |
|
|
sc = vScale * oldVel[index]; |
108 |
|
|
} |
109 |
|
|
|
110 |
|
|
void NPrT::getPosScale(const Vector3d& pos, const Vector3d& COM, int index, Vector3d& sc) { |
111 |
|
|
|
112 |
|
|
/**@todo */ |
113 |
|
|
Vector3d rj = (oldPos[index] + pos)/2.0 -COM; |
114 |
|
|
sc = eta * rj; |
115 |
|
|
} |
116 |
|
|
|
117 |
|
|
void NPrT::scaleSimBox(){ |
118 |
|
|
Mat3x3d scaleMat; |
119 |
|
|
|
120 |
tim |
539 |
scaleMat(0, 0) = exp(dt*eta(0, 0)); |
121 |
|
|
scaleMat(1, 1) = exp(dt*eta(1, 1)); |
122 |
|
|
scaleMat(2, 2) = exp(dt*eta(2, 2)); |
123 |
|
|
Mat3x3d hmat = currentSnapshot_->getHmat(); |
124 |
|
|
hmat = hmat *scaleMat; |
125 |
|
|
currentSnapshot_->setHmat(hmat); |
126 |
tim |
536 |
|
127 |
|
|
} |
128 |
|
|
|
129 |
|
|
bool NPrT::etaConverged() { |
130 |
|
|
int i; |
131 |
|
|
double diffEta, sumEta; |
132 |
|
|
|
133 |
|
|
sumEta = 0; |
134 |
|
|
for(i = 0; i < 3; i++) { |
135 |
|
|
sumEta += pow(prevEta(i, i) - eta(i, i), 2); |
136 |
|
|
} |
137 |
|
|
|
138 |
|
|
diffEta = sqrt( sumEta / 3.0 ); |
139 |
|
|
|
140 |
|
|
return ( diffEta <= etaTolerance ); |
141 |
|
|
} |
142 |
|
|
|
143 |
|
|
double NPrT::calcConservedQuantity(){ |
144 |
|
|
|
145 |
|
|
chi= currentSnapshot_->getChi(); |
146 |
|
|
integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
147 |
|
|
loadEta(); |
148 |
|
|
|
149 |
|
|
// We need NkBT a lot, so just set it here: This is the RAW number |
150 |
|
|
// of integrableObjects, so no subtraction or addition of constraints or |
151 |
|
|
// orientational degrees of freedom: |
152 |
|
|
NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp; |
153 |
|
|
|
154 |
|
|
// fkBT is used because the thermostat operates on more degrees of freedom |
155 |
|
|
// than the barostat (when there are particles with orientational degrees |
156 |
|
|
// of freedom). |
157 |
|
|
fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp; |
158 |
|
|
|
159 |
|
|
|
160 |
tim |
538 |
double totalEnergy = thermo.getTotalE(); |
161 |
tim |
536 |
|
162 |
tim |
538 |
double thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert); |
163 |
tim |
536 |
|
164 |
tim |
538 |
double thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; |
165 |
tim |
536 |
|
166 |
|
|
SquareMatrix<double, 3> tmp = eta.transpose() * eta; |
167 |
tim |
538 |
double trEta = tmp.trace(); |
168 |
tim |
536 |
|
169 |
tim |
538 |
double barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert); |
170 |
tim |
536 |
|
171 |
tim |
538 |
double barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert; |
172 |
tim |
536 |
|
173 |
tim |
538 |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
174 |
|
|
double hz = hmat(2, 2); |
175 |
|
|
double area = hmat(0,0) * hmat(1, 1); |
176 |
tim |
536 |
|
177 |
tim |
538 |
double conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
178 |
|
|
barostat_kinetic + barostat_potential - surfaceTension * area; |
179 |
|
|
|
180 |
tim |
536 |
return conservedQuantity; |
181 |
|
|
|
182 |
|
|
} |
183 |
|
|
|
184 |
|
|
void NPrT::loadEta() { |
185 |
|
|
eta= currentSnapshot_->getEta(); |
186 |
|
|
|
187 |
|
|
//if (!eta.isDiagonal()) { |
188 |
|
|
// sprintf( painCave.errMsg, |
189 |
|
|
// "NPrT error: the diagonal elements of eta matrix are not the same or etaMat is not a diagonal matrix"); |
190 |
|
|
// painCave.isFatal = 1; |
191 |
|
|
// simError(); |
192 |
|
|
//} |
193 |
|
|
} |
194 |
|
|
|
195 |
|
|
void NPrT::saveEta() { |
196 |
|
|
currentSnapshot_->setEta(eta); |
197 |
|
|
} |
198 |
|
|
|
199 |
|
|
} |
200 |
|
|
|
201 |
|
|
|