1 |
< |
#include <math.h> |
2 |
< |
#include "MatVec3.h" |
3 |
< |
#include "Atom.hpp" |
4 |
< |
#include "SRI.hpp" |
5 |
< |
#include "AbstractClasses.hpp" |
6 |
< |
#include "SimInfo.hpp" |
7 |
< |
#include "ForceFields.hpp" |
8 |
< |
#include "Thermo.hpp" |
9 |
< |
#include "ReadWrite.hpp" |
10 |
< |
#include "Integrator.hpp" |
11 |
< |
#include "simError.h" |
1 |
> |
/* |
2 |
> |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
> |
* |
4 |
> |
* The University of Notre Dame grants you ("Licensee") a |
5 |
> |
* non-exclusive, royalty free, license to use, modify and |
6 |
> |
* redistribute this software in source and binary code form, provided |
7 |
> |
* that the following conditions are met: |
8 |
> |
* |
9 |
> |
* 1. Acknowledgement of the program authors must be made in any |
10 |
> |
* publication of scientific results based in part on use of the |
11 |
> |
* program. An acceptable form of acknowledgement is citation of |
12 |
> |
* the article in which the program was described (Matthew |
13 |
> |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
> |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
> |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
> |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
> |
* |
18 |
> |
* 2. Redistributions of source code must retain the above copyright |
19 |
> |
* notice, this list of conditions and the following disclaimer. |
20 |
> |
* |
21 |
> |
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
> |
* notice, this list of conditions and the following disclaimer in the |
23 |
> |
* documentation and/or other materials provided with the |
24 |
> |
* distribution. |
25 |
> |
* |
26 |
> |
* This software is provided "AS IS," without a warranty of any |
27 |
> |
* kind. All express or implied conditions, representations and |
28 |
> |
* warranties, including any implied warranty of merchantability, |
29 |
> |
* fitness for a particular purpose or non-infringement, are hereby |
30 |
> |
* excluded. The University of Notre Dame and its licensors shall not |
31 |
> |
* be liable for any damages suffered by licensee as a result of |
32 |
> |
* using, modifying or distributing the software or its |
33 |
> |
* derivatives. In no event will the University of Notre Dame or its |
34 |
> |
* licensors be liable for any lost revenue, profit or data, or for |
35 |
> |
* direct, indirect, special, consequential, incidental or punitive |
36 |
> |
* damages, however caused and regardless of the theory of liability, |
37 |
> |
* arising out of the use of or inability to use software, even if the |
38 |
> |
* University of Notre Dame has been advised of the possibility of |
39 |
> |
* such damages. |
40 |
> |
*/ |
41 |
> |
|
42 |
> |
#include "brains/SimInfo.hpp" |
43 |
> |
#include "brains/Thermo.hpp" |
44 |
> |
#include "integrators/IntegratorCreator.hpp" |
45 |
> |
#include "integrators/NPTxyz.hpp" |
46 |
> |
#include "primitives/Molecule.hpp" |
47 |
> |
#include "utils/OOPSEConstant.hpp" |
48 |
> |
#include "utils/simError.h" |
49 |
|
|
13 |
– |
#ifdef IS_MPI |
14 |
– |
#include "mpiSimulation.hpp" |
15 |
– |
#endif |
16 |
– |
|
50 |
|
// Basic non-isotropic thermostating and barostating via the Melchionna |
51 |
|
// modification of the Hoover algorithm: |
52 |
|
// |
57 |
|
// |
58 |
|
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
59 |
|
|
60 |
< |
template<typename T> NPTxyz<T>::NPTxyz ( SimInfo *theInfo, ForceFields* the_ff): |
28 |
< |
T( theInfo, the_ff ) |
29 |
< |
{ |
30 |
< |
GenericData* data; |
31 |
< |
DoubleArrayData * etaValue; |
32 |
< |
vector<double> etaArray; |
33 |
< |
int i,j; |
60 |
> |
namespace oopse { |
61 |
|
|
62 |
< |
for(i = 0; i < 3; i++){ |
63 |
< |
for (j = 0; j < 3; j++){ |
62 |
> |
|
63 |
> |
RealType NPTxyz::calcConservedQuantity(){ |
64 |
|
|
65 |
< |
eta[i][j] = 0.0; |
66 |
< |
oldEta[i][j] = 0.0; |
67 |
< |
} |
68 |
< |
} |
65 |
> |
// We need NkBT a lot, so just set it here: This is the RAW number |
66 |
> |
// of integrableObjects, so no subtraction or addition of constraints or |
67 |
> |
// orientational degrees of freedom: |
68 |
> |
NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp; |
69 |
|
|
70 |
+ |
// fkBT is used because the thermostat operates on more degrees of freedom |
71 |
+ |
// than the barostat (when there are particles with orientational degrees |
72 |
+ |
// of freedom). |
73 |
+ |
fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp; |
74 |
|
|
75 |
< |
if( theInfo->useInitXSstate ){ |
75 |
> |
RealType conservedQuantity; |
76 |
> |
RealType totalEnergy; |
77 |
> |
RealType thermostat_kinetic; |
78 |
> |
RealType thermostat_potential; |
79 |
> |
RealType barostat_kinetic; |
80 |
> |
RealType barostat_potential; |
81 |
> |
RealType trEta; |
82 |
|
|
83 |
< |
// retrieve eta array from simInfo if it exists |
47 |
< |
data = info->getProperty(ETAVALUE_ID); |
48 |
< |
if(data){ |
49 |
< |
etaValue = dynamic_cast<DoubleArrayData*>(data); |
50 |
< |
|
51 |
< |
if(etaValue){ |
52 |
< |
etaArray = etaValue->getData(); |
53 |
< |
|
54 |
< |
for(i = 0; i < 3; i++){ |
55 |
< |
for (j = 0; j < 3; j++){ |
56 |
< |
eta[i][j] = etaArray[3*i+j]; |
57 |
< |
oldEta[i][j] = eta[i][j]; |
58 |
< |
} |
59 |
< |
} |
60 |
< |
} |
61 |
< |
} |
62 |
< |
} |
63 |
< |
} |
83 |
> |
totalEnergy = thermo.getTotalE(); |
84 |
|
|
85 |
< |
template<typename T> NPTxyz<T>::~NPTxyz() { |
85 |
> |
thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert); |
86 |
|
|
87 |
< |
// empty for now |
68 |
< |
} |
87 |
> |
thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; |
88 |
|
|
89 |
< |
template<typename T> void NPTxyz<T>::resetIntegrator() { |
89 |
> |
SquareMatrix<RealType, 3> tmp = eta.transpose() * eta; |
90 |
> |
trEta = tmp.trace(); |
91 |
|
|
92 |
< |
int i, j; |
92 |
> |
barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert); |
93 |
|
|
94 |
< |
for(i = 0; i < 3; i++) |
75 |
< |
for (j = 0; j < 3; j++) |
76 |
< |
eta[i][j] = 0.0; |
94 |
> |
barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert; |
95 |
|
|
96 |
< |
T::resetIntegrator(); |
97 |
< |
} |
96 |
> |
conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
97 |
> |
barostat_kinetic + barostat_potential; |
98 |
|
|
81 |
– |
template<typename T> void NPTxyz<T>::evolveEtaA() { |
99 |
|
|
100 |
< |
int i, j; |
100 |
> |
return conservedQuantity; |
101 |
|
|
85 |
– |
for(i = 0; i < 3; i ++){ |
86 |
– |
for(j = 0; j < 3; j++){ |
87 |
– |
if( i == j) |
88 |
– |
eta[i][j] += dt2 * instaVol * |
89 |
– |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
90 |
– |
else |
91 |
– |
eta[i][j] = 0.0; |
92 |
– |
} |
102 |
|
} |
103 |
|
|
104 |
< |
for(i = 0; i < 3; i++) |
105 |
< |
for (j = 0; j < 3; j++) |
97 |
< |
oldEta[i][j] = eta[i][j]; |
98 |
< |
} |
104 |
> |
|
105 |
> |
void NPTxyz::scaleSimBox(){ |
106 |
|
|
107 |
< |
template<typename T> void NPTxyz<T>::evolveEtaB() { |
107 |
> |
int i,j,k; |
108 |
> |
Mat3x3d scaleMat; |
109 |
> |
RealType eta2ij, scaleFactor; |
110 |
> |
RealType bigScale, smallScale, offDiagMax; |
111 |
> |
Mat3x3d hm; |
112 |
> |
Mat3x3d hmnew; |
113 |
|
|
102 |
– |
int i,j; |
114 |
|
|
104 |
– |
for(i = 0; i < 3; i++) |
105 |
– |
for (j = 0; j < 3; j++) |
106 |
– |
prevEta[i][j] = eta[i][j]; |
115 |
|
|
116 |
< |
for(i = 0; i < 3; i ++){ |
109 |
< |
for(j = 0; j < 3; j++){ |
110 |
< |
if( i == j) { |
111 |
< |
eta[i][j] = oldEta[i][j] + dt2 * instaVol * |
112 |
< |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
113 |
< |
} else { |
114 |
< |
eta[i][j] = 0.0; |
115 |
< |
} |
116 |
< |
} |
117 |
< |
} |
118 |
< |
} |
116 |
> |
// Scale the box after all the positions have been moved: |
117 |
|
|
118 |
< |
template<typename T> void NPTxyz<T>::calcVelScale(void) { |
119 |
< |
int i,j; |
118 |
> |
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
119 |
> |
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
120 |
|
|
121 |
< |
for (i = 0; i < 3; i++ ) { |
122 |
< |
for (j = 0; j < 3; j++ ) { |
123 |
< |
vScale[i][j] = eta[i][j]; |
121 |
> |
bigScale = 1.0; |
122 |
> |
smallScale = 1.0; |
123 |
> |
offDiagMax = 0.0; |
124 |
|
|
125 |
< |
if (i == j) { |
126 |
< |
vScale[i][j] += chi; |
125 |
> |
for(i=0; i<3; i++){ |
126 |
> |
for(j=0; j<3; j++){ |
127 |
> |
scaleMat(i, j) = 0.0; |
128 |
> |
if(i==j) { |
129 |
> |
scaleMat(i, j) = 1.0; |
130 |
> |
} |
131 |
|
} |
132 |
|
} |
131 |
– |
} |
132 |
– |
} |
133 |
|
|
134 |
< |
template<typename T> void NPTxyz<T>::getVelScaleA(double sc[3], double vel[3]) { |
135 |
< |
matVecMul3( vScale, vel, sc ); |
136 |
< |
} |
134 |
> |
for(i=0;i<3;i++){ |
135 |
|
|
136 |
< |
template<typename T> void NPTxyz<T>::getVelScaleB(double sc[3], int index ){ |
139 |
< |
int j; |
140 |
< |
double myVel[3]; |
136 |
> |
// calculate the scaleFactors |
137 |
|
|
138 |
< |
for (j = 0; j < 3; j++) |
143 |
< |
myVel[j] = oldVel[3*index + j]; |
138 |
> |
scaleFactor = exp(dt*eta(i, i)); |
139 |
|
|
140 |
< |
matVecMul3( vScale, myVel, sc ); |
146 |
< |
} |
140 |
> |
scaleMat(i, i) = scaleFactor; |
141 |
|
|
142 |
< |
template<typename T> void NPTxyz<T>::getPosScale(double pos[3], double COM[3], |
143 |
< |
int index, double sc[3]){ |
144 |
< |
int j; |
145 |
< |
double rj[3]; |
142 |
> |
if (scaleMat(i, i) > bigScale) { |
143 |
> |
bigScale = scaleMat(i, i); |
144 |
> |
} |
145 |
> |
|
146 |
> |
if (scaleMat(i, i) < smallScale) { |
147 |
> |
smallScale = scaleMat(i, i); |
148 |
> |
} |
149 |
> |
} |
150 |
|
|
151 |
< |
for(j=0; j<3; j++) |
152 |
< |
rj[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j]; |
151 |
> |
if ((bigScale > 1.1) || (smallScale < 0.9)) { |
152 |
> |
sprintf( painCave.errMsg, |
153 |
> |
"NPTxyz error: Attempting a Box scaling of more than 10 percent.\n" |
154 |
> |
" Check your tauBarostat, as it is probably too small!\n\n" |
155 |
> |
" scaleMat = [%lf\t%lf\t%lf]\n" |
156 |
> |
" [%lf\t%lf\t%lf]\n" |
157 |
> |
" [%lf\t%lf\t%lf]\n", |
158 |
> |
scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), |
159 |
> |
scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), |
160 |
> |
scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2)); |
161 |
> |
painCave.isFatal = 1; |
162 |
> |
simError(); |
163 |
> |
} else { |
164 |
|
|
165 |
< |
matVecMul3( eta, rj, sc ); |
166 |
< |
} |
167 |
< |
|
159 |
< |
template<typename T> void NPTxyz<T>::scaleSimBox( void ){ |
160 |
< |
|
161 |
< |
int i,j,k; |
162 |
< |
double scaleMat[3][3]; |
163 |
< |
double eta2ij, scaleFactor; |
164 |
< |
double bigScale, smallScale, offDiagMax; |
165 |
< |
double hm[3][3], hmnew[3][3]; |
166 |
< |
|
167 |
< |
|
168 |
< |
|
169 |
< |
// Scale the box after all the positions have been moved: |
170 |
< |
|
171 |
< |
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
172 |
< |
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
173 |
< |
|
174 |
< |
bigScale = 1.0; |
175 |
< |
smallScale = 1.0; |
176 |
< |
offDiagMax = 0.0; |
177 |
< |
|
178 |
< |
for(i=0; i<3; i++){ |
179 |
< |
for(j=0; j<3; j++){ |
180 |
< |
scaleMat[i][j] = 0.0; |
181 |
< |
if(i==j) scaleMat[i][j] = 1.0; |
165 |
> |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
166 |
> |
hmat = hmat *scaleMat; |
167 |
> |
currentSnapshot_->setHmat(hmat); |
168 |
|
} |
169 |
|
} |
170 |
|
|
171 |
< |
for(i=0;i<3;i++){ |
172 |
< |
|
187 |
< |
// calculate the scaleFactors |
188 |
< |
|
189 |
< |
scaleFactor = exp(dt*eta[i][i]); |
190 |
< |
|
191 |
< |
scaleMat[i][i] = scaleFactor; |
192 |
< |
|
193 |
< |
if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i]; |
194 |
< |
if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i]; |
171 |
> |
void NPTxyz::loadEta() { |
172 |
> |
eta= currentSnapshot_->getEta(); |
173 |
|
} |
174 |
|
|
197 |
– |
// for(i=0; i<3; i++){ |
198 |
– |
// for(j=0; j<3; j++){ |
199 |
– |
|
200 |
– |
// // Calculate the matrix Product of the eta array (we only need |
201 |
– |
// // the ij element right now): |
202 |
– |
|
203 |
– |
// eta2ij = 0.0; |
204 |
– |
// for(k=0; k<3; k++){ |
205 |
– |
// eta2ij += eta[i][k] * eta[k][j]; |
206 |
– |
// } |
207 |
– |
|
208 |
– |
// scaleMat[i][j] = 0.0; |
209 |
– |
// // identity matrix (see above): |
210 |
– |
// if (i == j) scaleMat[i][j] = 1.0; |
211 |
– |
// // Taylor expansion for the exponential truncated at second order: |
212 |
– |
// scaleMat[i][j] += dt*eta[i][j] + 0.5*dt*dt*eta2ij; |
213 |
– |
|
214 |
– |
// if (i != j) |
215 |
– |
// if (fabs(scaleMat[i][j]) > offDiagMax) |
216 |
– |
// offDiagMax = fabs(scaleMat[i][j]); |
217 |
– |
// } |
218 |
– |
|
219 |
– |
// if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i]; |
220 |
– |
// if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i]; |
221 |
– |
// } |
222 |
– |
|
223 |
– |
if ((bigScale > 1.1) || (smallScale < 0.9)) { |
224 |
– |
sprintf( painCave.errMsg, |
225 |
– |
"NPTxyz error: Attempting a Box scaling of more than 10 percent.\n" |
226 |
– |
" Check your tauBarostat, as it is probably too small!\n\n" |
227 |
– |
" scaleMat = [%lf\t%lf\t%lf]\n" |
228 |
– |
" [%lf\t%lf\t%lf]\n" |
229 |
– |
" [%lf\t%lf\t%lf]\n", |
230 |
– |
scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], |
231 |
– |
scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], |
232 |
– |
scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); |
233 |
– |
painCave.isFatal = 1; |
234 |
– |
simError(); |
235 |
– |
} else { |
236 |
– |
info->getBoxM(hm); |
237 |
– |
matMul3(hm, scaleMat, hmnew); |
238 |
– |
info->setBoxM(hmnew); |
239 |
– |
} |
175 |
|
} |
241 |
– |
|
242 |
– |
template<typename T> bool NPTxyz<T>::etaConverged() { |
243 |
– |
int i; |
244 |
– |
double diffEta, sumEta; |
245 |
– |
|
246 |
– |
sumEta = 0; |
247 |
– |
for(i = 0; i < 3; i++) |
248 |
– |
sumEta += pow(prevEta[i][i] - eta[i][i], 2); |
249 |
– |
|
250 |
– |
diffEta = sqrt( sumEta / 3.0 ); |
251 |
– |
|
252 |
– |
return ( diffEta <= etaTolerance ); |
253 |
– |
} |
254 |
– |
|
255 |
– |
template<typename T> double NPTxyz<T>::getConservedQuantity(void){ |
256 |
– |
|
257 |
– |
double conservedQuantity; |
258 |
– |
double totalEnergy; |
259 |
– |
double thermostat_kinetic; |
260 |
– |
double thermostat_potential; |
261 |
– |
double barostat_kinetic; |
262 |
– |
double barostat_potential; |
263 |
– |
double trEta; |
264 |
– |
double a[3][3], b[3][3]; |
265 |
– |
|
266 |
– |
totalEnergy = tStats->getTotalE(); |
267 |
– |
|
268 |
– |
thermostat_kinetic = fkBT * tt2 * chi * chi / |
269 |
– |
(2.0 * eConvert); |
270 |
– |
|
271 |
– |
thermostat_potential = fkBT* integralOfChidt / eConvert; |
272 |
– |
|
273 |
– |
transposeMat3(eta, a); |
274 |
– |
matMul3(a, eta, b); |
275 |
– |
trEta = matTrace3(b); |
276 |
– |
|
277 |
– |
barostat_kinetic = NkBT * tb2 * trEta / |
278 |
– |
(2.0 * eConvert); |
279 |
– |
|
280 |
– |
barostat_potential = (targetPressure * tStats->getVolume() / p_convert) / |
281 |
– |
eConvert; |
282 |
– |
|
283 |
– |
conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
284 |
– |
barostat_kinetic + barostat_potential; |
285 |
– |
|
286 |
– |
// cout.width(8); |
287 |
– |
// cout.precision(8); |
288 |
– |
|
289 |
– |
// cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic << |
290 |
– |
// "\t" << thermostat_potential << "\t" << barostat_kinetic << |
291 |
– |
// "\t" << barostat_potential << "\t" << conservedQuantity << endl; |
292 |
– |
|
293 |
– |
return conservedQuantity; |
294 |
– |
|
295 |
– |
} |
296 |
– |
|
297 |
– |
template<typename T> string NPTxyz<T>::getAdditionalParameters(void){ |
298 |
– |
string parameters; |
299 |
– |
const int BUFFERSIZE = 2000; // size of the read buffer |
300 |
– |
char buffer[BUFFERSIZE]; |
301 |
– |
|
302 |
– |
sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt); |
303 |
– |
parameters += buffer; |
304 |
– |
|
305 |
– |
for(int i = 0; i < 3; i++){ |
306 |
– |
sprintf(buffer,"\t%G\t%G\t%G;", eta[i][0], eta[i][1], eta[i][2]); |
307 |
– |
parameters += buffer; |
308 |
– |
} |
309 |
– |
|
310 |
– |
return parameters; |
311 |
– |
|
312 |
– |
} |