6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
#include "brains/SimInfo.hpp" |
45 |
|
#include "integrators/IntegratorCreator.hpp" |
46 |
|
#include "integrators/NPTxyz.hpp" |
47 |
|
#include "primitives/Molecule.hpp" |
48 |
< |
#include "utils/OOPSEConstant.hpp" |
48 |
> |
#include "utils/PhysicalConstants.hpp" |
49 |
|
#include "utils/simError.h" |
50 |
|
|
51 |
|
// Basic non-isotropic thermostating and barostating via the Melchionna |
58 |
|
// |
59 |
|
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
60 |
|
|
61 |
< |
namespace oopse { |
61 |
> |
namespace OpenMD { |
62 |
|
|
63 |
|
|
64 |
< |
double NPTxyz::calcConservedQuantity(){ |
64 |
> |
RealType NPTxyz::calcConservedQuantity(){ |
65 |
> |
thermostat = snap->getThermostat(); |
66 |
> |
loadEta(); |
67 |
|
|
68 |
|
// We need NkBT a lot, so just set it here: This is the RAW number |
69 |
|
// of integrableObjects, so no subtraction or addition of constraints or |
70 |
|
// orientational degrees of freedom: |
71 |
< |
NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp; |
71 |
> |
NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp; |
72 |
|
|
73 |
|
// fkBT is used because the thermostat operates on more degrees of freedom |
74 |
|
// than the barostat (when there are particles with orientational degrees |
75 |
|
// of freedom). |
76 |
< |
fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp; |
76 |
> |
fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp; |
77 |
|
|
78 |
< |
double conservedQuantity; |
79 |
< |
double totalEnergy; |
80 |
< |
double thermostat_kinetic; |
81 |
< |
double thermostat_potential; |
82 |
< |
double barostat_kinetic; |
83 |
< |
double barostat_potential; |
84 |
< |
double trEta; |
78 |
> |
RealType conservedQuantity; |
79 |
> |
RealType totalEnergy; |
80 |
> |
RealType thermostat_kinetic; |
81 |
> |
RealType thermostat_potential; |
82 |
> |
RealType barostat_kinetic; |
83 |
> |
RealType barostat_potential; |
84 |
> |
RealType trEta; |
85 |
|
|
86 |
< |
totalEnergy = thermo.getTotalE(); |
86 |
> |
totalEnergy = thermo.getTotalEnergy(); |
87 |
|
|
88 |
< |
thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert); |
88 |
> |
thermostat_kinetic = fkBT * tt2 * thermostat.first * thermostat.first |
89 |
> |
/ (2.0 * PhysicalConstants::energyConvert); |
90 |
|
|
91 |
< |
thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; |
91 |
> |
thermostat_potential = fkBT* thermostat.second |
92 |
> |
/ PhysicalConstants::energyConvert; |
93 |
|
|
94 |
< |
SquareMatrix<double, 3> tmp = eta.transpose() * eta; |
94 |
> |
SquareMatrix<RealType, 3> tmp = eta.transpose() * eta; |
95 |
|
trEta = tmp.trace(); |
96 |
|
|
97 |
< |
barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert); |
97 |
> |
barostat_kinetic = NkBT * tb2 * trEta /(2.0 * PhysicalConstants::energyConvert); |
98 |
|
|
99 |
< |
barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert; |
99 |
> |
barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) /PhysicalConstants::energyConvert; |
100 |
|
|
101 |
|
conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
102 |
|
barostat_kinetic + barostat_potential; |
109 |
|
|
110 |
|
void NPTxyz::scaleSimBox(){ |
111 |
|
|
112 |
< |
int i,j,k; |
112 |
> |
int i, j; |
113 |
|
Mat3x3d scaleMat; |
114 |
< |
double eta2ij, scaleFactor; |
115 |
< |
double bigScale, smallScale, offDiagMax; |
114 |
> |
RealType scaleFactor; |
115 |
> |
RealType bigScale, smallScale; |
116 |
|
Mat3x3d hm; |
117 |
|
Mat3x3d hmnew; |
118 |
|
|
114 |
– |
|
115 |
– |
|
119 |
|
// Scale the box after all the positions have been moved: |
120 |
|
|
121 |
|
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
123 |
|
|
124 |
|
bigScale = 1.0; |
125 |
|
smallScale = 1.0; |
123 |
– |
offDiagMax = 0.0; |
126 |
|
|
127 |
|
for(i=0; i<3; i++){ |
128 |
|
for(j=0; j<3; j++){ |
164 |
|
simError(); |
165 |
|
} else { |
166 |
|
|
167 |
< |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
167 |
> |
Mat3x3d hmat = snap->getHmat(); |
168 |
|
hmat = hmat *scaleMat; |
169 |
< |
currentSnapshot_->setHmat(hmat); |
169 |
> |
snap->setHmat(hmat); |
170 |
|
} |
171 |
|
} |
172 |
|
|
173 |
|
void NPTxyz::loadEta() { |
174 |
< |
eta= currentSnapshot_->getEta(); |
174 |
> |
eta= snap->getBarostat(); |
175 |
|
} |
176 |
|
|
177 |
|
} |