6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
41 |
|
|
42 |
|
#include "brains/SimInfo.hpp" |
44 |
|
#include "integrators/IntegratorCreator.hpp" |
45 |
|
#include "integrators/NPTxyz.hpp" |
46 |
|
#include "primitives/Molecule.hpp" |
47 |
< |
#include "utils/OOPSEConstant.hpp" |
47 |
> |
#include "utils/PhysicalConstants.hpp" |
48 |
|
#include "utils/simError.h" |
49 |
|
|
50 |
|
// Basic non-isotropic thermostating and barostating via the Melchionna |
57 |
|
// |
58 |
|
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
59 |
|
|
60 |
< |
namespace oopse { |
60 |
> |
namespace OpenMD { |
61 |
|
|
62 |
|
|
63 |
|
RealType NPTxyz::calcConservedQuantity(){ |
64 |
|
|
65 |
+ |
chi= currentSnapshot_->getChi(); |
66 |
+ |
integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
67 |
+ |
loadEta(); |
68 |
+ |
|
69 |
|
// We need NkBT a lot, so just set it here: This is the RAW number |
70 |
|
// of integrableObjects, so no subtraction or addition of constraints or |
71 |
|
// orientational degrees of freedom: |
72 |
< |
NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp; |
72 |
> |
NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp; |
73 |
|
|
74 |
|
// fkBT is used because the thermostat operates on more degrees of freedom |
75 |
|
// than the barostat (when there are particles with orientational degrees |
76 |
|
// of freedom). |
77 |
< |
fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp; |
77 |
> |
fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp; |
78 |
|
|
79 |
|
RealType conservedQuantity; |
80 |
|
RealType totalEnergy; |
86 |
|
|
87 |
|
totalEnergy = thermo.getTotalE(); |
88 |
|
|
89 |
< |
thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert); |
89 |
> |
thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * PhysicalConstants::energyConvert); |
90 |
|
|
91 |
< |
thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; |
91 |
> |
thermostat_potential = fkBT* integralOfChidt / PhysicalConstants::energyConvert; |
92 |
|
|
93 |
|
SquareMatrix<RealType, 3> tmp = eta.transpose() * eta; |
94 |
|
trEta = tmp.trace(); |
95 |
|
|
96 |
< |
barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert); |
96 |
> |
barostat_kinetic = NkBT * tb2 * trEta /(2.0 * PhysicalConstants::energyConvert); |
97 |
|
|
98 |
< |
barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert; |
98 |
> |
barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) /PhysicalConstants::energyConvert; |
99 |
|
|
100 |
|
conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
101 |
|
barostat_kinetic + barostat_potential; |