1 |
< |
/* |
1 |
> |
/* |
2 |
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
* |
4 |
|
* The University of Notre Dame grants you ("Licensee") a |
6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
41 |
|
|
42 |
|
#include "brains/SimInfo.hpp" |
44 |
|
#include "integrators/IntegratorCreator.hpp" |
45 |
|
#include "integrators/NPTxyz.hpp" |
46 |
|
#include "primitives/Molecule.hpp" |
47 |
< |
#include "utils/OOPSEConstant.hpp" |
47 |
> |
#include "utils/PhysicalConstants.hpp" |
48 |
|
#include "utils/simError.h" |
49 |
|
|
50 |
|
// Basic non-isotropic thermostating and barostating via the Melchionna |
57 |
|
// |
58 |
|
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
59 |
|
|
60 |
< |
namespace oopse { |
60 |
> |
namespace OpenMD { |
61 |
|
|
62 |
|
|
63 |
< |
double NPTxyz::calcConservedQuantity(){ |
63 |
> |
RealType NPTxyz::calcConservedQuantity(){ |
64 |
|
|
65 |
|
// We need NkBT a lot, so just set it here: This is the RAW number |
66 |
|
// of integrableObjects, so no subtraction or addition of constraints or |
67 |
|
// orientational degrees of freedom: |
68 |
< |
NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp; |
68 |
> |
NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp; |
69 |
|
|
70 |
|
// fkBT is used because the thermostat operates on more degrees of freedom |
71 |
|
// than the barostat (when there are particles with orientational degrees |
72 |
|
// of freedom). |
73 |
< |
fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp; |
73 |
> |
fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp; |
74 |
|
|
75 |
< |
double conservedQuantity; |
76 |
< |
double totalEnergy; |
77 |
< |
double thermostat_kinetic; |
78 |
< |
double thermostat_potential; |
79 |
< |
double barostat_kinetic; |
80 |
< |
double barostat_potential; |
81 |
< |
double trEta; |
75 |
> |
RealType conservedQuantity; |
76 |
> |
RealType totalEnergy; |
77 |
> |
RealType thermostat_kinetic; |
78 |
> |
RealType thermostat_potential; |
79 |
> |
RealType barostat_kinetic; |
80 |
> |
RealType barostat_potential; |
81 |
> |
RealType trEta; |
82 |
|
|
83 |
|
totalEnergy = thermo.getTotalE(); |
84 |
|
|
85 |
< |
thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert); |
85 |
> |
thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * PhysicalConstants::energyConvert); |
86 |
|
|
87 |
< |
thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; |
87 |
> |
thermostat_potential = fkBT* integralOfChidt / PhysicalConstants::energyConvert; |
88 |
|
|
89 |
< |
SquareMatrix<double, 3> tmp = eta.transpose() * eta; |
89 |
> |
SquareMatrix<RealType, 3> tmp = eta.transpose() * eta; |
90 |
|
trEta = tmp.trace(); |
91 |
|
|
92 |
< |
barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert); |
92 |
> |
barostat_kinetic = NkBT * tb2 * trEta /(2.0 * PhysicalConstants::energyConvert); |
93 |
|
|
94 |
< |
barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert; |
94 |
> |
barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) /PhysicalConstants::energyConvert; |
95 |
|
|
96 |
|
conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
97 |
< |
barostat_kinetic + barostat_potential; |
97 |
> |
barostat_kinetic + barostat_potential; |
98 |
|
|
99 |
|
|
100 |
|
return conservedQuantity; |
101 |
|
|
102 |
< |
} |
102 |
> |
} |
103 |
|
|
104 |
|
|
105 |
< |
void NPTxyz::scaleSimBox(){ |
105 |
> |
void NPTxyz::scaleSimBox(){ |
106 |
|
|
107 |
|
int i,j,k; |
108 |
|
Mat3x3d scaleMat; |
109 |
< |
double eta2ij, scaleFactor; |
110 |
< |
double bigScale, smallScale, offDiagMax; |
109 |
> |
RealType eta2ij, scaleFactor; |
110 |
> |
RealType bigScale, smallScale, offDiagMax; |
111 |
|
Mat3x3d hm; |
112 |
|
Mat3x3d hmnew; |
113 |
|
|
114 |
|
|
115 |
|
|
116 |
< |
// Scale the box after all the positions have been moved: |
116 |
> |
// Scale the box after all the positions have been moved: |
117 |
|
|
118 |
< |
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
119 |
< |
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
118 |
> |
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
119 |
> |
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
120 |
|
|
121 |
|
bigScale = 1.0; |
122 |
|
smallScale = 1.0; |
123 |
|
offDiagMax = 0.0; |
124 |
|
|
125 |
|
for(i=0; i<3; i++){ |
126 |
< |
for(j=0; j<3; j++){ |
127 |
< |
scaleMat(i, j) = 0.0; |
128 |
< |
if(i==j) { |
129 |
< |
scaleMat(i, j) = 1.0; |
130 |
< |
} |
131 |
< |
} |
126 |
> |
for(j=0; j<3; j++){ |
127 |
> |
scaleMat(i, j) = 0.0; |
128 |
> |
if(i==j) { |
129 |
> |
scaleMat(i, j) = 1.0; |
130 |
> |
} |
131 |
> |
} |
132 |
|
} |
133 |
|
|
134 |
|
for(i=0;i<3;i++){ |
135 |
|
|
136 |
< |
// calculate the scaleFactors |
136 |
> |
// calculate the scaleFactors |
137 |
|
|
138 |
< |
scaleFactor = exp(dt*eta(i, i)); |
138 |
> |
scaleFactor = exp(dt*eta(i, i)); |
139 |
|
|
140 |
< |
scaleMat(i, i) = scaleFactor; |
140 |
> |
scaleMat(i, i) = scaleFactor; |
141 |
|
|
142 |
< |
if (scaleMat(i, i) > bigScale) { |
143 |
< |
bigScale = scaleMat(i, i); |
144 |
< |
} |
142 |
> |
if (scaleMat(i, i) > bigScale) { |
143 |
> |
bigScale = scaleMat(i, i); |
144 |
> |
} |
145 |
|
|
146 |
< |
if (scaleMat(i, i) < smallScale) { |
147 |
< |
smallScale = scaleMat(i, i); |
148 |
< |
} |
146 |
> |
if (scaleMat(i, i) < smallScale) { |
147 |
> |
smallScale = scaleMat(i, i); |
148 |
> |
} |
149 |
|
} |
150 |
|
|
151 |
|
if ((bigScale > 1.1) || (smallScale < 0.9)) { |
152 |
< |
sprintf( painCave.errMsg, |
153 |
< |
"NPTxyz error: Attempting a Box scaling of more than 10 percent.\n" |
154 |
< |
" Check your tauBarostat, as it is probably too small!\n\n" |
155 |
< |
" scaleMat = [%lf\t%lf\t%lf]\n" |
156 |
< |
" [%lf\t%lf\t%lf]\n" |
157 |
< |
" [%lf\t%lf\t%lf]\n", |
158 |
< |
scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), |
159 |
< |
scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), |
160 |
< |
scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2)); |
161 |
< |
painCave.isFatal = 1; |
162 |
< |
simError(); |
152 |
> |
sprintf( painCave.errMsg, |
153 |
> |
"NPTxyz error: Attempting a Box scaling of more than 10 percent.\n" |
154 |
> |
" Check your tauBarostat, as it is probably too small!\n\n" |
155 |
> |
" scaleMat = [%lf\t%lf\t%lf]\n" |
156 |
> |
" [%lf\t%lf\t%lf]\n" |
157 |
> |
" [%lf\t%lf\t%lf]\n", |
158 |
> |
scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), |
159 |
> |
scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), |
160 |
> |
scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2)); |
161 |
> |
painCave.isFatal = 1; |
162 |
> |
simError(); |
163 |
|
} else { |
164 |
|
|
165 |
< |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
166 |
< |
hmat = hmat *scaleMat; |
167 |
< |
currentSnapshot_->setHmat(hmat); |
165 |
> |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
166 |
> |
hmat = hmat *scaleMat; |
167 |
> |
currentSnapshot_->setHmat(hmat); |
168 |
|
} |
169 |
< |
} |
169 |
> |
} |
170 |
|
|
171 |
< |
void NPTxyz::loadEta() { |
171 |
> |
void NPTxyz::loadEta() { |
172 |
|
eta= currentSnapshot_->getEta(); |
173 |
< |
} |
173 |
> |
} |
174 |
|
|
175 |
|
} |