1 |
gezelter |
2 |
#include <math.h> |
2 |
|
|
#include "MatVec3.h" |
3 |
|
|
#include "Atom.hpp" |
4 |
|
|
#include "SRI.hpp" |
5 |
|
|
#include "AbstractClasses.hpp" |
6 |
|
|
#include "SimInfo.hpp" |
7 |
|
|
#include "ForceFields.hpp" |
8 |
|
|
#include "Thermo.hpp" |
9 |
|
|
#include "ReadWrite.hpp" |
10 |
|
|
#include "Integrator.hpp" |
11 |
|
|
#include "simError.h" |
12 |
|
|
|
13 |
|
|
#ifdef IS_MPI |
14 |
|
|
#include "mpiSimulation.hpp" |
15 |
|
|
#endif |
16 |
|
|
|
17 |
|
|
// Basic non-isotropic thermostating and barostating via the Melchionna |
18 |
|
|
// modification of the Hoover algorithm: |
19 |
|
|
// |
20 |
|
|
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
21 |
|
|
// Molec. Phys., 78, 533. |
22 |
|
|
// |
23 |
|
|
// and |
24 |
|
|
// |
25 |
|
|
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
26 |
|
|
|
27 |
|
|
template<typename T> NPTxyz<T>::NPTxyz ( SimInfo *theInfo, ForceFields* the_ff): |
28 |
|
|
T( theInfo, the_ff ) |
29 |
|
|
{ |
30 |
|
|
GenericData* data; |
31 |
|
|
DoubleArrayData * etaValue; |
32 |
|
|
vector<double> etaArray; |
33 |
|
|
int i,j; |
34 |
|
|
|
35 |
|
|
for(i = 0; i < 3; i++){ |
36 |
|
|
for (j = 0; j < 3; j++){ |
37 |
|
|
|
38 |
|
|
eta[i][j] = 0.0; |
39 |
|
|
oldEta[i][j] = 0.0; |
40 |
|
|
} |
41 |
|
|
} |
42 |
|
|
|
43 |
|
|
|
44 |
|
|
if( theInfo->useInitXSstate ){ |
45 |
|
|
|
46 |
|
|
// retrieve eta array from simInfo if it exists |
47 |
|
|
data = info->getProperty(ETAVALUE_ID); |
48 |
|
|
if(data){ |
49 |
|
|
etaValue = dynamic_cast<DoubleArrayData*>(data); |
50 |
|
|
|
51 |
|
|
if(etaValue){ |
52 |
|
|
etaArray = etaValue->getData(); |
53 |
|
|
|
54 |
|
|
for(i = 0; i < 3; i++){ |
55 |
|
|
for (j = 0; j < 3; j++){ |
56 |
|
|
eta[i][j] = etaArray[3*i+j]; |
57 |
|
|
oldEta[i][j] = eta[i][j]; |
58 |
|
|
} |
59 |
|
|
} |
60 |
|
|
} |
61 |
|
|
} |
62 |
|
|
} |
63 |
|
|
} |
64 |
|
|
|
65 |
|
|
template<typename T> NPTxyz<T>::~NPTxyz() { |
66 |
|
|
|
67 |
|
|
// empty for now |
68 |
|
|
} |
69 |
|
|
|
70 |
|
|
template<typename T> void NPTxyz<T>::resetIntegrator() { |
71 |
|
|
|
72 |
|
|
int i, j; |
73 |
|
|
|
74 |
|
|
for(i = 0; i < 3; i++) |
75 |
|
|
for (j = 0; j < 3; j++) |
76 |
|
|
eta[i][j] = 0.0; |
77 |
|
|
|
78 |
|
|
T::resetIntegrator(); |
79 |
|
|
} |
80 |
|
|
|
81 |
|
|
template<typename T> void NPTxyz<T>::evolveEtaA() { |
82 |
|
|
|
83 |
|
|
int i, j; |
84 |
|
|
|
85 |
|
|
for(i = 0; i < 3; i ++){ |
86 |
|
|
for(j = 0; j < 3; j++){ |
87 |
|
|
if( i == j) |
88 |
|
|
eta[i][j] += dt2 * instaVol * |
89 |
|
|
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
90 |
|
|
else |
91 |
|
|
eta[i][j] = 0.0; |
92 |
|
|
} |
93 |
|
|
} |
94 |
|
|
|
95 |
|
|
for(i = 0; i < 3; i++) |
96 |
|
|
for (j = 0; j < 3; j++) |
97 |
|
|
oldEta[i][j] = eta[i][j]; |
98 |
|
|
} |
99 |
|
|
|
100 |
|
|
template<typename T> void NPTxyz<T>::evolveEtaB() { |
101 |
|
|
|
102 |
|
|
int i,j; |
103 |
|
|
|
104 |
|
|
for(i = 0; i < 3; i++) |
105 |
|
|
for (j = 0; j < 3; j++) |
106 |
|
|
prevEta[i][j] = eta[i][j]; |
107 |
|
|
|
108 |
|
|
for(i = 0; i < 3; i ++){ |
109 |
|
|
for(j = 0; j < 3; j++){ |
110 |
|
|
if( i == j) { |
111 |
|
|
eta[i][j] = oldEta[i][j] + dt2 * instaVol * |
112 |
|
|
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
113 |
|
|
} else { |
114 |
|
|
eta[i][j] = 0.0; |
115 |
|
|
} |
116 |
|
|
} |
117 |
|
|
} |
118 |
|
|
} |
119 |
|
|
|
120 |
|
|
template<typename T> void NPTxyz<T>::calcVelScale(void) { |
121 |
|
|
int i,j; |
122 |
|
|
|
123 |
|
|
for (i = 0; i < 3; i++ ) { |
124 |
|
|
for (j = 0; j < 3; j++ ) { |
125 |
|
|
vScale[i][j] = eta[i][j]; |
126 |
|
|
|
127 |
|
|
if (i == j) { |
128 |
|
|
vScale[i][j] += chi; |
129 |
|
|
} |
130 |
|
|
} |
131 |
|
|
} |
132 |
|
|
} |
133 |
|
|
|
134 |
|
|
template<typename T> void NPTxyz<T>::getVelScaleA(double sc[3], double vel[3]) { |
135 |
|
|
matVecMul3( vScale, vel, sc ); |
136 |
|
|
} |
137 |
|
|
|
138 |
|
|
template<typename T> void NPTxyz<T>::getVelScaleB(double sc[3], int index ){ |
139 |
|
|
int j; |
140 |
|
|
double myVel[3]; |
141 |
|
|
|
142 |
|
|
for (j = 0; j < 3; j++) |
143 |
|
|
myVel[j] = oldVel[3*index + j]; |
144 |
|
|
|
145 |
|
|
matVecMul3( vScale, myVel, sc ); |
146 |
|
|
} |
147 |
|
|
|
148 |
|
|
template<typename T> void NPTxyz<T>::getPosScale(double pos[3], double COM[3], |
149 |
|
|
int index, double sc[3]){ |
150 |
|
|
int j; |
151 |
|
|
double rj[3]; |
152 |
|
|
|
153 |
|
|
for(j=0; j<3; j++) |
154 |
|
|
rj[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j]; |
155 |
|
|
|
156 |
|
|
matVecMul3( eta, rj, sc ); |
157 |
|
|
} |
158 |
|
|
|
159 |
|
|
template<typename T> void NPTxyz<T>::scaleSimBox( void ){ |
160 |
|
|
|
161 |
|
|
int i,j,k; |
162 |
|
|
double scaleMat[3][3]; |
163 |
|
|
double eta2ij, scaleFactor; |
164 |
|
|
double bigScale, smallScale, offDiagMax; |
165 |
|
|
double hm[3][3], hmnew[3][3]; |
166 |
|
|
|
167 |
|
|
|
168 |
|
|
|
169 |
|
|
// Scale the box after all the positions have been moved: |
170 |
|
|
|
171 |
|
|
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
172 |
|
|
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
173 |
|
|
|
174 |
|
|
bigScale = 1.0; |
175 |
|
|
smallScale = 1.0; |
176 |
|
|
offDiagMax = 0.0; |
177 |
|
|
|
178 |
|
|
for(i=0; i<3; i++){ |
179 |
|
|
for(j=0; j<3; j++){ |
180 |
|
|
scaleMat[i][j] = 0.0; |
181 |
|
|
if(i==j) scaleMat[i][j] = 1.0; |
182 |
|
|
} |
183 |
|
|
} |
184 |
|
|
|
185 |
|
|
for(i=0;i<3;i++){ |
186 |
|
|
|
187 |
|
|
// calculate the scaleFactors |
188 |
|
|
|
189 |
|
|
scaleFactor = exp(dt*eta[i][i]); |
190 |
|
|
|
191 |
|
|
scaleMat[i][i] = scaleFactor; |
192 |
|
|
|
193 |
|
|
if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i]; |
194 |
|
|
if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i]; |
195 |
|
|
} |
196 |
|
|
|
197 |
|
|
// for(i=0; i<3; i++){ |
198 |
|
|
// for(j=0; j<3; j++){ |
199 |
|
|
|
200 |
|
|
// // Calculate the matrix Product of the eta array (we only need |
201 |
|
|
// // the ij element right now): |
202 |
|
|
|
203 |
|
|
// eta2ij = 0.0; |
204 |
|
|
// for(k=0; k<3; k++){ |
205 |
|
|
// eta2ij += eta[i][k] * eta[k][j]; |
206 |
|
|
// } |
207 |
|
|
|
208 |
|
|
// scaleMat[i][j] = 0.0; |
209 |
|
|
// // identity matrix (see above): |
210 |
|
|
// if (i == j) scaleMat[i][j] = 1.0; |
211 |
|
|
// // Taylor expansion for the exponential truncated at second order: |
212 |
|
|
// scaleMat[i][j] += dt*eta[i][j] + 0.5*dt*dt*eta2ij; |
213 |
|
|
|
214 |
|
|
// if (i != j) |
215 |
|
|
// if (fabs(scaleMat[i][j]) > offDiagMax) |
216 |
|
|
// offDiagMax = fabs(scaleMat[i][j]); |
217 |
|
|
// } |
218 |
|
|
|
219 |
|
|
// if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i]; |
220 |
|
|
// if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i]; |
221 |
|
|
// } |
222 |
|
|
|
223 |
|
|
if ((bigScale > 1.1) || (smallScale < 0.9)) { |
224 |
|
|
sprintf( painCave.errMsg, |
225 |
|
|
"NPTxyz error: Attempting a Box scaling of more than 10 percent.\n" |
226 |
|
|
" Check your tauBarostat, as it is probably too small!\n\n" |
227 |
|
|
" scaleMat = [%lf\t%lf\t%lf]\n" |
228 |
|
|
" [%lf\t%lf\t%lf]\n" |
229 |
|
|
" [%lf\t%lf\t%lf]\n", |
230 |
|
|
scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], |
231 |
|
|
scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], |
232 |
|
|
scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); |
233 |
|
|
painCave.isFatal = 1; |
234 |
|
|
simError(); |
235 |
|
|
} else { |
236 |
|
|
info->getBoxM(hm); |
237 |
|
|
matMul3(hm, scaleMat, hmnew); |
238 |
|
|
info->setBoxM(hmnew); |
239 |
|
|
} |
240 |
|
|
} |
241 |
|
|
|
242 |
|
|
template<typename T> bool NPTxyz<T>::etaConverged() { |
243 |
|
|
int i; |
244 |
|
|
double diffEta, sumEta; |
245 |
|
|
|
246 |
|
|
sumEta = 0; |
247 |
|
|
for(i = 0; i < 3; i++) |
248 |
|
|
sumEta += pow(prevEta[i][i] - eta[i][i], 2); |
249 |
|
|
|
250 |
|
|
diffEta = sqrt( sumEta / 3.0 ); |
251 |
|
|
|
252 |
|
|
return ( diffEta <= etaTolerance ); |
253 |
|
|
} |
254 |
|
|
|
255 |
|
|
template<typename T> double NPTxyz<T>::getConservedQuantity(void){ |
256 |
|
|
|
257 |
|
|
double conservedQuantity; |
258 |
|
|
double totalEnergy; |
259 |
|
|
double thermostat_kinetic; |
260 |
|
|
double thermostat_potential; |
261 |
|
|
double barostat_kinetic; |
262 |
|
|
double barostat_potential; |
263 |
|
|
double trEta; |
264 |
|
|
double a[3][3], b[3][3]; |
265 |
|
|
|
266 |
|
|
totalEnergy = tStats->getTotalE(); |
267 |
|
|
|
268 |
|
|
thermostat_kinetic = fkBT * tt2 * chi * chi / |
269 |
|
|
(2.0 * eConvert); |
270 |
|
|
|
271 |
|
|
thermostat_potential = fkBT* integralOfChidt / eConvert; |
272 |
|
|
|
273 |
|
|
transposeMat3(eta, a); |
274 |
|
|
matMul3(a, eta, b); |
275 |
|
|
trEta = matTrace3(b); |
276 |
|
|
|
277 |
|
|
barostat_kinetic = NkBT * tb2 * trEta / |
278 |
|
|
(2.0 * eConvert); |
279 |
|
|
|
280 |
|
|
barostat_potential = (targetPressure * tStats->getVolume() / p_convert) / |
281 |
|
|
eConvert; |
282 |
|
|
|
283 |
|
|
conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
284 |
|
|
barostat_kinetic + barostat_potential; |
285 |
|
|
|
286 |
|
|
// cout.width(8); |
287 |
|
|
// cout.precision(8); |
288 |
|
|
|
289 |
|
|
// cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic << |
290 |
|
|
// "\t" << thermostat_potential << "\t" << barostat_kinetic << |
291 |
|
|
// "\t" << barostat_potential << "\t" << conservedQuantity << endl; |
292 |
|
|
|
293 |
|
|
return conservedQuantity; |
294 |
|
|
|
295 |
|
|
} |
296 |
|
|
|
297 |
|
|
template<typename T> string NPTxyz<T>::getAdditionalParameters(void){ |
298 |
|
|
string parameters; |
299 |
|
|
const int BUFFERSIZE = 2000; // size of the read buffer |
300 |
|
|
char buffer[BUFFERSIZE]; |
301 |
|
|
|
302 |
|
|
sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt); |
303 |
|
|
parameters += buffer; |
304 |
|
|
|
305 |
|
|
for(int i = 0; i < 3; i++){ |
306 |
|
|
sprintf(buffer,"\t%G\t%G\t%G;", eta[i][0], eta[i][1], eta[i][2]); |
307 |
|
|
parameters += buffer; |
308 |
|
|
} |
309 |
|
|
|
310 |
|
|
return parameters; |
311 |
|
|
|
312 |
|
|
} |