6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
#include "NPTi.hpp" |
45 |
|
#include "brains/Thermo.hpp" |
46 |
|
#include "integrators/NPT.hpp" |
47 |
|
#include "primitives/Molecule.hpp" |
48 |
< |
#include "utils/OOPSEConstant.hpp" |
48 |
> |
#include "utils/PhysicalConstants.hpp" |
49 |
|
#include "utils/simError.h" |
50 |
|
|
51 |
< |
namespace oopse { |
51 |
> |
namespace OpenMD { |
52 |
|
|
53 |
|
// Basic isotropic thermostating and barostating via the Melchionna |
54 |
|
// modification of the Hoover algorithm: |
66 |
|
|
67 |
|
void NPTi::evolveEtaA() { |
68 |
|
eta += dt2 * ( instaVol * (instaPress - targetPressure) / |
69 |
< |
(OOPSEConstant::pressureConvert*NkBT*tb2)); |
69 |
> |
(PhysicalConstants::pressureConvert*NkBT*tb2)); |
70 |
|
oldEta = eta; |
71 |
|
} |
72 |
|
|
74 |
|
|
75 |
|
prevEta = eta; |
76 |
|
eta = oldEta + dt2 * ( instaVol * (instaPress - targetPressure) / |
77 |
< |
(OOPSEConstant::pressureConvert*NkBT*tb2)); |
77 |
> |
(PhysicalConstants::pressureConvert*NkBT*tb2)); |
78 |
|
} |
79 |
|
|
80 |
|
void NPTi::calcVelScale() { |
81 |
< |
vScale = chi + eta; |
81 |
> |
vScale = thermostat.first + eta; |
82 |
|
} |
83 |
|
|
84 |
|
void NPTi::getVelScaleA(Vector3d& sc, const Vector3d& vel) { |
112 |
|
painCave.isFatal = 1; |
113 |
|
simError(); |
114 |
|
} else { |
115 |
< |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
115 |
> |
Mat3x3d hmat = snap->getHmat(); |
116 |
|
hmat *= scaleFactor; |
117 |
< |
currentSnapshot_->setHmat(hmat); |
117 |
> |
snap->setHmat(hmat); |
118 |
|
} |
119 |
|
|
120 |
|
} |
126 |
|
|
127 |
|
RealType NPTi::calcConservedQuantity(){ |
128 |
|
|
129 |
< |
chi= currentSnapshot_->getChi(); |
129 |
< |
integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
129 |
> |
thermostat = snap->getThermostat(); |
130 |
|
loadEta(); |
131 |
|
// We need NkBT a lot, so just set it here: This is the RAW number |
132 |
|
// of integrableObjects, so no subtraction or addition of constraints or |
133 |
|
// orientational degrees of freedom: |
134 |
< |
NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp; |
134 |
> |
NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp; |
135 |
|
|
136 |
|
// fkBT is used because the thermostat operates on more degrees of freedom |
137 |
|
// than the barostat (when there are particles with orientational degrees |
138 |
|
// of freedom). |
139 |
< |
fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp; |
139 |
> |
fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp; |
140 |
|
|
141 |
|
RealType conservedQuantity; |
142 |
|
RealType Energy; |
145 |
|
RealType barostat_kinetic; |
146 |
|
RealType barostat_potential; |
147 |
|
|
148 |
< |
Energy =thermo.getTotalE(); |
148 |
> |
Energy =thermo.getTotalEnergy(); |
149 |
|
|
150 |
< |
thermostat_kinetic = fkBT* tt2 * chi * chi / (2.0 * OOPSEConstant::energyConvert); |
150 |
> |
thermostat_kinetic = fkBT* tt2 * thermostat.first * |
151 |
> |
thermostat.first / (2.0 * PhysicalConstants::energyConvert); |
152 |
|
|
153 |
< |
thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; |
153 |
> |
thermostat_potential = fkBT* thermostat.second / PhysicalConstants::energyConvert; |
154 |
|
|
155 |
|
|
156 |
< |
barostat_kinetic = 3.0 * NkBT * tb2 * eta * eta /(2.0 * OOPSEConstant::energyConvert); |
156 |
> |
barostat_kinetic = 3.0 * NkBT * tb2 * eta * eta /(2.0 * PhysicalConstants::energyConvert); |
157 |
|
|
158 |
< |
barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) / |
159 |
< |
OOPSEConstant::energyConvert; |
158 |
> |
barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) / |
159 |
> |
PhysicalConstants::energyConvert; |
160 |
|
|
161 |
|
conservedQuantity = Energy + thermostat_kinetic + thermostat_potential + |
162 |
|
barostat_kinetic + barostat_potential; |
165 |
|
} |
166 |
|
|
167 |
|
void NPTi::loadEta() { |
168 |
< |
Mat3x3d etaMat = currentSnapshot_->getEta(); |
168 |
> |
Mat3x3d etaMat = snap->getBarostat(); |
169 |
|
eta = etaMat(0,0); |
170 |
< |
//if (fabs(etaMat(1,1) - eta) >= oopse::epsilon || fabs(etaMat(1,1) - eta) >= oopse::epsilon || !etaMat.isDiagonal()) { |
170 |
> |
//if (fabs(etaMat(1,1) - eta) >= OpenMD::epsilon || fabs(etaMat(1,1) - eta) >= OpenMD::epsilon || !etaMat.isDiagonal()) { |
171 |
|
// sprintf( painCave.errMsg, |
172 |
|
// "NPTi error: the diagonal elements of eta matrix are not the same or etaMat is not a diagonal matrix"); |
173 |
|
// painCave.isFatal = 1; |
180 |
|
etaMat(0, 0) = eta; |
181 |
|
etaMat(1, 1) = eta; |
182 |
|
etaMat(2, 2) = eta; |
183 |
< |
currentSnapshot_->setEta(etaMat); |
183 |
> |
snap->setBarostat(etaMat); |
184 |
|
} |
185 |
|
} |